- 从零开始学python数据分析-从零开始学Python数据分析与挖掘 PDF 扫描版
weixin_37988176
给大家带来的一篇关于数据挖掘相关的电子书资源,介绍了关于Python、数据分析、数据挖掘方面的内容,本书是由清华大学出版社出版,格式为PDF,资源大小67.8MB,刘顺祥编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:7.5。内容介绍从零开始学Python数据分析与挖掘本书以Python3版本作为数据分析与挖掘实战的应用工具,从Pyhton的基础语法开始,陆续介绍有关数值计算的Numpy、数
- 商业分析能力是怎样炼成的?
R3eE9y2OeFcU40
感谢关注天善智能,走好数据之路↑↑↑欢迎关注天善智能,我们是专注于商业智能BI,人工智能AI,大数据分析与挖掘领域的垂直社区,学习,问答、求职一站式搞定!对商业智能BI、大数据分析挖掘、机器学习,python,R等数据领域感兴趣的同学加微信:tstoutiao,邀请你进入数据爱好者交流群,数据爱好者们都在这儿。作者:接地气的陈老师链接:https://www.zhihu.com/question/
- 阿里云服务器内存型r7、r8a、r8y实例区别参考
阿里云最新优惠和活动汇总
在阿里云目前的活动中,属于内存型实例规格的云服务器有内存型r7、内存型r8a、内存型r8y这几个实例规格,相比于活动内的经济型e、通用算力型u1实例来说,这些实例规格等性能更强,与计算型和通用型相比,它的内存更大,因此这些内存型实例规格主要适用于数据库、中间件和数据分析与挖掘,Hadoop、Spark集群等场景,本文为大家介绍内存型r7、r8a、r8y实例区别及最新活动价格,以供参考。2核16G可
- python金融数据分析与挖掘实战 黄恒秋_金融数据分析与挖掘——股票时间序列数据处理...
weixin_39849930
黄恒秋
1、什么是时间序列分析时间序列分析(timeseriesanalysis)方法,强调的是通过对一个区域进行一定时间段内的连续观察计算,提取相关特征,并分析其变化过程。时间序列分析主要有确定性变化分析和随机性变化分析确定性变化分析:移动平均法,移动方差和标准差、移动相关系数随机性变化分析:AR、ARMA模型2、移动平均法2.1移动窗口主要用在时间序列的数组变换,不同作用的函数将它们统称为移动窗口函数
- 阿里云服务器内存型r7、r8a、r8y实例区别及最新活动价格参考
阿里云最新优惠和活动汇总
在阿里云目前的活动中,属于内存型实例规格的云服务器有内存型r7、内存型r8a、内存型r8y这几个实例规格,相比于活动内的经济型e和通用算力型u1等实例规格来说,这些实例规格等性能更强,适用于数据分析与挖掘,Hadoop、Spark集群、数据库、中间件、大数据等场景。本文为大家介绍内存型r7、r8a、r8y实例区别及最新活动价格,以供参考。一、内存型实例规格族r7性能介绍1、r7的内存型、存储、网络
- numpy和matplotlib小例子
Roy Teng
numpymatplotlib
最近准备学《Python数据分析与挖掘实战》这本书,刚看到第二章numpy和matplotlib这一部分,发现这个图挺有意思的,就做个笔记记录一下,日后发现有意思的继续更。importnumpyasnpimportmatplotlib.pyplotaspltx=np.linspace(0,10,1000)y=np.sin(x)+1z=np.cos(x**2)+1plt.figure(figsize
- Python3数据分析与挖掘建模(7)使用matplotlib和seaborn画图
鮀城小帅
python数据分析matplotlibpython柱状图饼图
1.可视化分析1.1概述可视化分析是数据分析中重要的一环,它可以帮助我们更直观地理解数据的特征、趋势和关系。在Python中,有多个库可以用于数据可视化,包括matplotlib、seaborn和plotly等。1.2常用的可视化方法和对应的库:(1)折线图和曲线图:用于显示数据随时间或其他连续变量的变化趋势。可以使用matplotlib和seaborn来创建这些图形。(2)柱状图和条形图:用于比
- 面试算法LeetCode刷题班—BAT面试官带你刷真题、过笔试
Dan Boneh
高级程序设计算法
课程名称:《面试算法LeetCode刷题班》——BAT面试官带你刷真题、过笔试主讲老师:林老师BAT资深研发工程师(T7/P8级),致力于搜索引擎及其子系统的研发、迭代与优化,数据分析与挖掘领域专家,多年担任校园招聘、社会招聘面试官,丰富的面试候选人经验。课程简介:掌握算法与数据结构是成为优秀程序员的必经之路,众多国内外知名互联网企业都将算法面试作为程序员招聘的重要和必需途径,只有高效应对各类题目
- python财政收入预测分析_python 数据分析-- 实战1(收入预测分析)
weixin_39572152
python财政收入预测分析
说明:本文用途只做学习记录:参考书籍:从零开始学Python数据分析与挖掘/刘顺祥著.—北京:清华大学出版社,2018首先看一下刘老师介绍的数据分析和数据挖掘的区别:1.预览数据集,明确分析目的通过Excel工具打开income文件,可发现该数据集一共有32561条样本数据,共有15个数据变量,其中9个离散型变量,6个数值型变量。数据项主要包括:年龄,工作类型,受教育程度,收入等,具体可见下面两个
- 阿里云服务器2核16G、4核32G、8核64G配置最新收费标准及活动价格
阿里云最新优惠和活动汇总
2核16G、8核64G、4核32G配置的云服务器处理器与内存比为1:8,这种配比的云服务器一般适用于数据分析与挖掘,Hadoop、Spark集群和数据库,缓存等内存密集型场景,因此,多为企业级用户选择,目前用户购买2核16G配置活动价格最低为2439.24元/1年起,购买4核32G配置活动价格最低为4499.88元/1年起,购买8核64G配置活动价格最低为8621.16元/1年起,本文介绍这些配置
- 《Python数据分析与挖掘实战》第12章——电子商务网站用户行为分析及服务推荐(协同推荐)数据探索分析篇①1 背景与目标分析2.数据探索分析
marraybug
python
文章目录1背景与目标分析2.数据探索分析2.1网页类型分析2.1.1统计各个网页类型所占的比例2.1.2网页107类型中的内部统计2.1.3统计带"?"问号网址类型统计2.1.4统计199类型中的具体类型占比2.1.5统计瞎逛用户中各个类型占比2.2点击次数分析2.2.1统计点击次数2.2.2点击次数与用户数量关系2.2.3统计1~7次数及7次以上的点击数2.2.4浏览一次的用户行为分析2.3网页
- 阿里云服务器2024年2核16G、4核32G、8核64G配置最新收费标准及活动价格
qq_3304559116
阿里云阿里云服务器云计算
2核16G、8核64G、4核32G配置的云服务器处理器与内存比为1:8,这种配比的云服务器一般适用于数据分析与挖掘,Hadoop、Spark集群和数据库,缓存等内存密集型场景,因此,多为企业级用户选择,目前用户购买2核16G配置活动价格最低为1473.41元/1年起,购买4核32G配置活动价格最低为2896.42元/1年起,购买8核64G配置活动价格最低为5742.43元/1年起,本文介绍这些配置
- 并行化K-means聚类算法的实现与分析
OverlordDuke
聚类算法算法kmeans聚类并行聚类算法
并行化K-means聚类算法并行化K-means聚类算法的实现与分析项目背景与意义算法原理与串行实现分析并行化策略与关键细节实验结果与讨论未来改进方向结语并行化K-means聚类算法的实现与分析在大数据时代,对数据进行高效的聚类是数据分析与挖掘的重要工具之一。本文将介绍并讨论使用OpenMP在C++中实现的并行化K-means聚类算法。我们将深入探讨算法的原理、并行化策略以及实验结果,以期为相关领
- 从零开始学python第二版_从零开始学Python数据分析与挖掘-从零开始学Python数据分析与挖掘第二版pdf下载电子版-精品下载...
weixin_39874366
从零开始学python第二版
从零开始学Python数据分析与挖掘第二版以Python3.7版本作为数据分析与挖掘实战的应用工具,从Python的基础语法开始,陆续介绍有关数值计算的numpy、数据处理的pandas、数据可视化的matplotlib和数据挖掘的sklearn等内容编辑推荐"为满足用人单位对数据分析和挖掘人员在编程方面的技能要求,本书遵循由浅入深的原则,详细地介绍了利用Python及其相关工具实现数据分析和挖掘
- 【毕设选题指导】2024 数据分析与挖掘方向毕业设计选题推荐
Mini_hailang_IT
毕设选题指导人工智能毕业设计算法数据挖掘数据分析毕设
目录前言数据挖掘方向选题迷茫选题的重要性更多选题指导最后前言大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。对毕设有任何疑问都可以问学
- 【大数据分析与挖掘技术】概述
Francek Chen
大数据技术基础数据分析数据挖掘Mahout
目录一、数据挖掘简介(一)数据挖掘对象(二)数据挖掘流程(三)数据挖掘的分析方法(四)经典算法二、Mahout(一)Mahout简介(二)主要特性(三)Mahout安装与配置一、数据挖掘简介需要是发明之母。近年来,数据挖掘引起了信息产业界的极大关注,其主要原因是存在大量数据,可以广泛使用,并且迫切需要将这些数据转换成有用的信息和知识。获取的信息和知识可以广泛用于各种应用,包括商务管理,生产控制,市
- 【大数据分析与挖掘技术】Mahout推荐算法
Francek Chen
大数据技术基础数据分析人工智能数据挖掘Mahout
目录一、推荐的定义与评估(一)推荐的定义(二)推荐的评估二、Mahout中的常见推荐算法(一)基于用户的推荐算法(二)基于物品的推荐算法(三)基于SVD的推荐算法(四)基于线性插值的推荐算法(五)基于聚类的推荐算法三、对GroupLens数据集进行推荐与评价(一)如何使用推荐器进行推荐(二)如何评估推荐器的好坏推荐是Mahout机器学习算法的主题之一,它极大地渗透到了人们日常生活的方方面面,比如,
- 数据中台概念
大数据驱动
#8数据中台-S级信息可视化大数据
数据中台1.数据中台模块数据采集数据存储数据处理数据分析数据应用2.数据中台的核心功能数据采集与集成数据清洗与预处理数据建模与存储数据分析与挖掘数据可视化与报告数据质量管理数据安全与隐私保护数据共享与开放3.如何建立数据中台确定业务需求收集数据源数据清洗和预处理数据建模和存储数据分析和挖掘数据可视化和报告数据质量管理数据安全和隐私保护数据共享和开放持续优化和升级4.数据中台的优点5.数据中台的缺点
- 1688商品数据API接口的数据分析与挖掘技巧
爱吃猫的菜菜
api接口数据分析java数据库安全大数据
随着电子商务的发展,越来越多的商家开始将业务拓展到线上。而1688作为中国最大的B2B电商平台之一,其商品数量和交易额均居于世界前列。因此,对于商家来说,了解商品的实时信息非常重要,可以帮助他们更好地管理商品、制定营销策略等。本文将介绍如何使用API接口来获取1688商品详情。一、API简介1688提供了丰富的API接口,用于获取商品数据、交易数据、用户数据等。其中,商品详情API是常用的接口之一
- Python环境下基于自适应滤波器的音频信号(wav格式)降噪方法
哥廷根数学学派
python开发语言
Python的集成环境我一般使用的是Winpython,Winpytho脱胎于pythonxy,面向科学计算,兼顾数据分析与挖掘;Anaconda主要面向数据分析与挖掘方面,在大数据处理方面有自己特色的一些包;Winpytho强调便携性,被做成绿色软件,不写入注册表,安装其实就是解压到某个文件夹,移动文件夹甚至放到U盘里在其他电脑上也能用。抛开软件包的差异,我个人也推荐初学者用winpython,
- 数据分析与挖掘简介
数据蜗牛
20世纪40年代第一台数字计算机出现到90年代中期之前,信息化建设可归为以单机应用为主要特征的数字化阶段(可称为信息化1.0),而第一次的信息化浪潮,始自20世纪80年代个人计算机的大规模普及应用。从90年代中期开始,以美国提出“信息高速公路”建设计划为重要标志,互联网开始了其大规模商用进程,带来了信息化建设的第二次浪潮,即以联网应用为主要特征的网络化阶段(可称为信息化2.0)。当前,信息化建设的
- 电商API接口的大数据分析与挖掘技巧
爱吃猫的菜菜
api接口数据分析信息可视化数据挖掘大数据数据库
随着电商行业的快速发展,电商平台上的交易数据量也越来越大。如何对这些数据进行分析和挖掘,从中获取有价值的信息,已经成为电商企业和开发者关注的重点。本文将介绍电商API接口的大数据分析与挖掘技巧。一、数据采集1.确定分析目标:在进行大数据分析之前,需要明确分析的目标和问题,以便针对性地采集数据。2.选择数据源:根据分析目标,选择合适的数据源。电商平台提供的API接口是获取数据的重要途径,可以通过调用
- 大数据分析与挖掘-期末复习大纲[HBU]
洛杉矶县牛肉板面
AI学习数据分析数据挖掘
前言这篇博客针对河北大学大数据分析与挖掘课程期末复习,目的是给同学们一个比较清晰的复习方向,具体的学习还需要平时认真听讲、写作业。我们使用的教材是这本:练习题目我只更新了部分答案,至于剩下的答案老师上课的时候会带着讲解的。在这里我只是为同学们提供一个复习纲要和复习方向。希望大家能快速抓到考试重点,不在其他方向上浪费精力。选择题答案:1.C2.D判断题答案:1.X2.√3.X4.X(若答案有误,请及
- Pytorch环境下基于Transformer的滚动轴承故障诊断
哥廷根数学学派
pytorchpython人工智能
关于python的集成环境,我一般Anaconda和winpython都用,windows下主要用Winpython,IDE为spyder(类MATLAB界面)。winpython脱胎于pythonxy,面向科学计算,兼顾数据分析与挖掘;Anaconda主要面向数据分析与挖掘方面,在大数据处理方面有自己特色的一些包;winpython强调便携性,被做成绿色软件,不写入注册表,安装其实就是解压到某个
- Python+MySQL+PowerBI 抖音用户浏览行为数据分析与挖掘
材哥儿
mysqlpython数据库数据分析powerbi数据挖掘
项目概述:抖音作为当下最火热的短视频软件,探索其产生的数据可以得到极高的价值。本项目模拟从将csv文件导入python工具进行数据分析并对用户点赞预测建模分析,且将python处理后的数据存储到MySQL数据库中,最后用可视化工具输出分析结果,最终可以更好地进行内容优化、产品运营。数据具体字段信息:字段字段说明字段字段说明uid用户idlike是否点赞user_city用户城市music_id音乐
- python数据分析与挖掘论文_《Python数据分析与机器学习实战-唐宇迪》读书笔记第10章-特征工程...
weixin_39616477
python数据分析与挖掘论文
第10章特征工程特征工程是整个机器学习中非常重要的一部分,如何对数据进行特征提取对最终结果的影响非常大。在建模过程中,一般会优先考虑算法和参数,但是数据特征才决定了整体结果的上限,而算法和参数只决定了如何逼近这个上限。特征工程其实就是要从原始数据中找到最有价值的信息,并转换成计算机所能读懂的形式。本章结合数值数据与文本数据来分别阐述如何进行数值特征与文本特征的提取。10.1数值特征实际数据中,最常
- 数据分析与挖掘入门——学习笔记(八)Pandas基本操作、运算、画图和IO操作
无敌的白金之星
数据分析与挖掘
一、基本操作为了更好的理解这些基本操作,我们将读取一个真实的股票数据。关于文件操作,后面在介绍,这里只先用一下API#读取文件data=pd.read_csv("./stock_day/stock_day.csv")#删除一些列,让数据更简单些,再去做后面的操作data=data.drop(["ma5","ma10","ma20","v_ma5","v_ma10","v_ma20"],axis=1
- 基于协同过滤算法的人才资源大数据分析与挖掘平台毕设源码
sj52abcd
算法数据分析课程设计
博主介绍:✌专注于VUE,小程序,安卓,Java,python,物联网专业,有16年开发经验,长年从事毕业指导,项目实战✌选取一个适合的毕业设计题目很重要。✌关注✌私信我✌具体的问题,我会尽力帮助你。目录开发背景:国外研究现状分析:国内研究现状分析:社会可行性:功能:数据库表设计:K-means算法实现:代码实现:开发背景:随着人才市场的不断扩大和竞争的加剧,如何更好地利用大数据技术,实现人才资源
- 【基于Python的信用卡客户历史数据分析与挖掘】
爱欲无极
机器学习数据分析与挖掘数据可视化python数据分析开发语言
基于Python的信用卡客户历史数据分析与挖掘前言技术栈数据获取与预处理描述性分析建立预测模型模型评估与结果展示Web应用搭建结语前言随着金融科技的迅猛发展,信用卡客户的历史数据分析变得越来越重要。本文将介绍如何使用Python、Sklearn和Flask对公开数据集进行信用卡客户违约预测分类模型的建立与分析。我们将运用SVM算法、决策树算法、KNN算法以及随机森林算法,通过ROC曲线、混淆矩阵等
- 【当当网图书数据分析与挖掘】
爱欲无极
数据分析与挖掘数据分析数据挖掘python爬虫聚类
包含内容:文档+源代码+爬虫数据+爬虫代码+当当网图书数据分析与挖掘演示视频数据集技术栈数据分析维度摘要创新点文档截图私聊我吧演示视频演示-当当网图书分析挖掘数据集爬取当当网的图书销售数据技术栈Flask:用于构建Web应用程序。MySQL:用于存储和管理爬取到的图书数据。Echarts:用于可视化数据分析结果。数据分析维度在数据的分析部分,主要分为四个维度,分别是类型、出版社、作者、出版时间,分
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p