数学之美~(01)最伟大的数学公式!

   英国科学期刊《物理世界》曾让读者投票评选了“最伟大的公式”,最终榜上有名的十个公式既有无人不知的1+1=2,又有著名的E=mc2;既有简单的-圆周公式,又有复杂的欧拉公式……
从什么时候起我们开始厌恶数学?这些东西原本如此美丽,如此精妙。这个地球上有多少伟大的智慧曾耗尽一生,才最终写下一个等号。每当你解不开方程的时候,不妨换一个角度想,暂且放下对理科的厌恶和对考试的痛恨。因为你正在见证的,是科学的美丽与人类的尊严。



No.10 圆的周长公式(The Length of the Circumference of a Circle)



世界最著名十大公式



这公式贼牛逼了,初中学到现在。目前,人类已经能得到圆周率的2061亿位精度。还是挺无聊的。现代科技领域使用的-圆周率值,有十几位已经足够了。如果用35位精度的-圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。现在的人计算圆周率,多数是为了验证计算机的计算能力,还有就是为了兴趣。



No.9 傅立叶变换(The Fourier Transform)



世界最著名十大公式



这个挺专业的,一般人完全不明白。不多作解释。简要地说没有这个式子没有今天的电子计算机,所以你能在这里上网除了感谢党感谢政府还要感谢这个完全看不懂的式子。另外傅立叶虽然姓傅,但是法国人。



No.8 德布罗意方程组(The de Broglie Relations)



世界最著名十大公式

世界最著名十大公式



这个东西也挺牛逼的,高中物理学到光学的话很多概念跟它是远亲。简要地说德布罗意这人觉得电子不仅是一个粒子,也是一种波,它还有 “波长”。于是搞啊搞就有了这个物质波方程,表达了波长、能量等等之间的关系。同时他获得了1929年诺贝尔物理学奖。



No.7 1+1=2

这个公式不需要名称,不需要翻译,不需要解释。



No.6 薛定谔方程(The Schrödinger Equation)


世界最著名十大公式



也是一般人完全不明白的。因此我摘录官方评价:“薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式。”由于对量子力学的杰出贡献,薛定谔获得1933年诺贝尔物理奖。
另外薛定谔虽然姓薛,但是奥地利人。



No.5 质能方程(Mass–energy Equivalence)



世界最著名十大公式



好像从来没有一个科学界的公式有如此广泛的意义。在物理学“奇迹年”1905年,由一个叫**因斯坦的年轻人提出。同年他还发表了《论动体的电动力学》——俗称狭义相对论。

这个公式告诉我们,爱因斯坦是牛逼的,能量和质量是可以互换的。副产品:原子弹。
No.4 勾股定理/毕达哥拉斯定理(Pythagorean Theorem)



世界最著名十大公式



做数学不可能没用到过吧,不多讲了。



No.3 牛顿第二定律(Newton's Second Law of Motion)



世界最著名十大公式



  有史以来最伟大的没有之一的科学家在有史以来最伟大没有之一的科学巨作《自然哲学的数学原理》当中的被认为是经典物理学中最伟大的没有之一的核心定律。动力的所有基本方程都可由它通过微积分推导出来。对于学过高中物理的人,没什么好多讲了。



No.2 欧拉公式(Euler's Identity)



世界最著名十大公式



这个公式是上帝写的么?到了最后几名,创造者个个神人。欧拉是历史上最多产的数学家,也是各领域(包含数学的所有分支及力学、光学、音响学、水利、天文、化学、医药等)最多著作的学者。数学史上称十八世纪为“欧拉时代”。欧拉出生于瑞士,31岁丧失了右眼的视力,59岁双眼失明,但他性格乐观,有惊人的记忆力及集中力。他一生谦逊,很少用自己的名字给他发现的东西命名。不过还是命名了一个最重要的一个常数——e。



No.1: 麦克斯韦方程组(The Maxwell's Equations)

麦克斯韦电磁场理论的要点可以归结为:
①几分立的带电体或电流,它们之间的一切电的及磁的作用都是通过它们之间的中间区域传递的,不论中间区域是真空还是实体物质。
②电能或磁能不仅存在于带电体、磁化体或带电流物体中,其大部分分布在周围的电磁场中。
③导体构成的电路若有中断处,电路中的传导电流将由电介质中的位移电流补偿贯通,即全电流连续。且位移电流与其所产生的磁场的关系与传导电流的相同。
④磁通量既无始点又无终点,即不存在磁荷。
⑤光波也是电磁波。
麦克斯韦方程组有两种表达方式。
1. 积分形式的麦克斯韦方程组是描述电磁场在某一体积或某一面积内的数学模型。表达式为:
数学之美~(01)最伟大的数学公式!_第1张图片
式①是由安培环路定律推广而得的全电流定律,其含义是:磁场强度H沿任意闭合曲线的线积分,等于穿过此曲线限定面积的全电流。等号右边第一项是传导电流.第二项是位移电流。式②是法拉第电磁感应定律的表达式,它说明电场强度E沿任意闭合曲线的线积分等于穿过由该曲线所限定面积的磁通对时间的变化率的负值。这里提到的闭合曲线,并不一定要由导体构成,它可以是介质回路,甚至只是任意一个闭合轮廓。式③表示磁通连续性原理,说明对于任意一个闭合曲面,有多少磁通进入盛然就有同样数量的磁通离开。即B线是既无始端又无终端的;同时也说明并不存在与电荷相对应的磷荷。式④是高斯定律的表达式,说明在时变的条件下,从任意一个闭合曲面出来的D的净通量,应等于该闭曲面所包围的体积内全部自由电荷之总和。
2. 微分形式的麦克斯韦方程组。微分形式的麦克斯韦方程是对场中每一点而言的。应用del算子,可以把它们写成
数学之美~(01)最伟大的数学公式!_第2张图片
式⑤是全电流定律的微分形式,它说明磁场强度H的旋度等于该点的全电流密度(传导电流密度J与位移电流密度
   
之和),即磁场的涡旋源是全电流密度,位移电流与传导电流一样都能产生磁场。式⑥是法拉第电磁感应定律的微分形式,说明电场强度E的旋度等于该点磁通密度B的时间变化率的负值,即电场的涡旋源是磁通密度的时间变化率。式⑦是磁通连续性原理的微分形式,说明磁通密度B的散度恒等于零,即B线是无始无终的。也就是说不存在与电荷对应的磁荷。式⑧是静电场高斯定律的推广,即在时变条件下,电位移D的散度仍等于该点的自由电荷体密度。
除了上述四个方程外,还需要有媒质的本构关系式
才能最终解决场量的求解问题。式中ε是媒质的介电常数,μ是媒质的磁导率,σ是媒质的电导率。

表达形式

编辑

积分形式

麦克斯韦方程组的积分形式如下:
数学之美~(01)最伟大的数学公式!_第3张图片
这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程。其中:
(1)描述了电场的性质。在一般情况下,电场可以是自由电荷的电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的 通量无贡献。
(2)描述了磁场的性质。磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。
(3)描述了变化的磁场 激发电场的规律。
(4)描述了传导电流和变化的电场激发磁场的规律。
稳恒场中的形式
时,方程组就还原为静电场和稳恒磁场的方程:
数学之美~(01)最伟大的数学公式!_第4张图片
无场源自由空间中的形式
   
,方程组就成为如下形式:
数学之美~(01)最伟大的数学公式!_第5张图片
麦克斯韦方程组的积分形式反映了空间某区域的电磁场量(D、E、B、H)和场源(电荷q、电流I)之间的关系。

微分形式

在电磁场的实际应用中,经常要知道空间逐点的电磁场量和电荷、电流之间的关系。从数学形式上,就是将麦克斯韦方程组的积分形式化为微分形式。
数学之美~(01)最伟大的数学公式!_第6张图片
注意:
(1)在不同的惯性参照系中,麦克斯韦方程组有同样的形式。
(2) 应用麦克斯韦方程组解决实际问题,还要考虑介质对电磁场的影响。例如在均匀 各向同性介质中, 电磁场量与介质特性量有下列关系:
在非均匀介质中,还要考虑电磁场量在界面上的边值关系。在利用t=0时场量的初值条件,原则上可以求出任一时刻空间任一点的电磁场,即E(x,y,z,t)和B(x,y,z,t)。
数学之美~(01)最伟大的数学公式!_第7张图片

复数形式

对于正弦时变场,可以使用复矢量将电磁场定律表示为复数形式。
数学之美~(01)最伟大的数学公式!_第8张图片
在复数形式的电磁场定律中,由于复数场量和源量都只是空间位置的函数,在求解时,不必再考虑它们与时间的依赖关系。因此,对讨论正弦时变场来说面采用复数形式的电磁场定律是较为方便的。

注记

采用不同的单位制,麦克斯韦方程组的形式会稍微有所改变,大致形式仍旧相同,只是不同的常数会出现在方程内部不同位置。
国际单位制是最常使用的单位制,整个工程学领域都采用这种单位制,大多数化学家也都使用这种单位制,大学物理教科书几乎都采用这种单位制。其它常用的单位制有 高斯单位制、洛伦兹-赫维赛德单位制(Lorentz-Heaviside units)和 普朗克单位制。由厘米-克-秒制衍生的高斯单位制,比较适合于教学用途,能够使得方程看起来更简单、更易懂。洛伦兹-赫维赛德单位制也是衍生于厘米-克-秒制,主要用于 粒子物理学;普朗克单位制是一种 自然单位制,其单位都是根据自然的性质定义,不是由人为设定。普朗克单位制是研究理论物理学非常有用的工具,能够给出很大的启示。在本页里,除非特别说明,所有方程都采用国际单位制。
这里展示出麦克斯韦方程组的两种等价表述。第一种表述如下:
数学之美~(01)最伟大的数学公式!_第9张图片
这种表述将 自由电荷和 束缚电荷总和为高斯定律所需要的总电荷,又将自由电流、 束缚电流和电极化电流总合为麦克斯韦-安培定律内的总电流。这种表述采用比较基础、微观的观点。这种表述可以应用于计算在真空里有限源电荷与源电流所产生的电场与磁场。但是,对于物质内部超多的电子与原子核,实际而言,无法一一纳入计算。事实上, 经典电磁学也不需要这么精确的答案。
第二种表述见前所述”积分形式“中的”一般形式“。它以自由电荷和自由电流为源头,而不直接计算出现于电介质的束缚电荷和出现于磁化物质的束缚电流和电极化电流所给出的贡献。由于在一般实际状况,能够直接控制的参数是自由电荷和自由电流,而束缚电荷、束缚电流和电极化电流是物质经过极化后产生的现象,采用这种表述会使得在介电质或磁化物质内各种物理计算更加简易。
表面上看,麦克斯韦方程组似乎是超定的(overdetermined)方程组,它只有六个未知量(矢量电场、磁场各拥有三个未知量,电流与电荷不是未知量,而是自由设定并符合 电荷守恒的物理量),但却有八个方程(两个高斯定律共有两个方程,法拉第定律与安培定律是矢量式,各含有三个方程)。这状况与麦克斯韦方程组的某种有限重复性有关。从理论可以推导出,任何满足法拉第定律与安培定律的系统必定满足两个高斯定律。 [1]  
另一方面,麦克斯韦方程组又是不封闭的。只有给定了电磁介质的特性,此方程组才能得到定解。
麦克斯韦方程组乃是由四个方程共同组成的: [2]  
  1. 高斯定律:该定律描述电场与空间中电荷分布的关系。 电场线开始于 正电荷,终止于 负电荷。计算穿过某给定闭曲面的电场线数量,即其 电通量,可以得知包含在这闭曲面内的总电荷。更详细地说,这定律描述穿过任意闭曲面的电通量与这闭曲面内的电荷之间的关系。
  2. 高斯磁定律:该定律表明,磁单极子实际上并不存在。所以,没有孤立磁荷,磁场线没有初始点,也没有终止点。磁场线会形成循环或延伸至无穷远。换句话说,进入任何区域的磁场线,必需从那区域离开。以术语来说,通过任意闭曲面的 磁通量等于零,或者,磁场是一个 无源场。
  3. 法拉第感应定律:该定律描述时变磁场怎样感应出电场。 电磁感应是制造许多 发电机的理论基础。例如,一块旋转的 条形磁铁会产生时变磁场,这又接下来会生成电场,使得邻近的闭合电路因而感应出电流。
  4. 麦克斯韦-安培定律:该定律阐明,磁场可以用两种方法生成:一种是靠 传导电流(原本的 安培定律),另一种是靠时变电场,或称 位移电流(麦克斯韦修正项)。
在电磁学里,麦克斯韦修正项意味着时变电场可以生成磁场,而由于法拉第感应定律,时变磁场又可以生成电场。这样,两个方程在理论上允许自我维持的电磁波传播于空间。




你可能感兴趣的:(Algorithms(算法),Other(其他))