TextCNN的PyTorch实现

本文主要介绍一篇将CNN应用到NLP领域的一篇论文 Convolutional Neural Networks for Sentence Classification,然后给出 PyTorch 实现

论文比较短,总体流程也不复杂,最主要的是下面这张图,只要理解了这张图,就知道如何写代码了。如果你不了解CNN,请先看我的这篇文章CS231n笔记:通俗理解CNN

TextCNN的PyTorch实现_第1张图片

下图的feature map是将一句话中的各个词通过WordEmbedding得到的,feature map的宽为embedding的维度,长为一句话的单词数量。例如下图中,很明显就是用一个6维的向量去编码每个词,并且一句话中有9个词

之所以有两张feature map,你可以理解为batchsize为2

其中,红色的框代表的就是卷积核。而且很明显可以看出,这是一个长宽不等的卷积核。有意思的是,卷积核的宽可以认为是n-gram,比方说下图卷积核宽为2,所以同时考虑了"wait"和"for"两个单词的词向量,因此可以认为该卷积是一个类似于bigram的模型

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9k0V91qc-1593652373824)(https://i.loli.net/2020/06/25/F5GjQbMdR3WgukT.png#shadow)]

后面的部分就是传统CNN的步骤,激活、池化、Flatten,没什么好说的

TextCNN的PyTorch实现_第2张图片

代码实现(PyTorch版)

源码来自于 nlp-tutorial,我在其基础上进行了修改(原本的代码感觉有很多问题)

'''
  code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
'''
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
import torch.nn.functional as F

dtype = torch.FloatTensor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

下面代码就是定义一些数据,以及设置一些常规参数

# 3 words sentences (=sequence_length is 3)
sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
labels = [1, 1, 1, 0, 0, 0]  # 1 is good, 0 is not good.

# TextCNN Parameter
embedding_size = 2
sequence_length = len(sentences[0]) # every sentences contains sequence_length(=3) words
num_classes = len(set(labels))  # num_classes=2
batch_size = 3

word_list = " ".join(sentences).split()
vocab = list(set(word_list))
word2idx = {w: i for i, w in enumerate(vocab)}
vocab_size = len(vocab)

数据预处理

def make_data(sentences, labels):
  inputs = []
  for sen in sentences:
      inputs.append([word2idx[n] for n in sen.split()])

  targets = []
  for out in labels:
      targets.append(out) # To using Torch Softmax Loss function
  return inputs, targets

input_batch, target_batch = make_data(sentences, labels)
input_batch, target_batch = torch.LongTensor(input_batch), torch.LongTensor(target_batch)

dataset = Data.TensorDataset(input_batch, target_batch)
loader = Data.DataLoader(dataset, batch_size, True)

构建模型

class TextCNN(nn.Module):
    def __init__(self):
        super(TextCNN, self).__init__()
        self.W = nn.Embedding(vocab_size, embedding_size)
        output_channel = 3
        self.conv = nn.Sequential(
            # conv : [input_channel(=1), output_channel, (filter_height, filter_width), stride=1]
            nn.Conv2d(1, output_channel, (2, embedding_size)),
            nn.ReLU(),
            # pool : ((filter_height, filter_width))
            nn.MaxPool2d((2, 1)),
        )
        # fc
        self.fc = nn.Linear(output_channel, num_classes)

    def forward(self, X):
      '''
      X: [batch_size, sequence_length]
      '''
      batch_size = X.shape[0]
      embedding_X = self.W(X) # [batch_size, sequence_length, embedding_size]
      embedding_X = embedding_X.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size]
      conved = self.conv(embedding_X) # [batch_size, output_channel*1*1]
      flatten = conved.view(batch_size, -1)
      output = self.fc(flatten)
      return output

下面详细介绍一下数据在网络中流动的过程中维度的变化。输入数据是个矩阵,矩阵维度为[batch_size, seqence_length],输入矩阵的数字代表的是某个词在整个词库中的索引(下标)

首先通过Embedding层,也就是查表,将每个索引转为一个向量,比方说12可能会变成[0.3,0.6,0.12,…],因此整个数据无形中就增加了一个维度,变成了[batch_size, sequence_length, embedding_size]

之后使用unsqueeze(1)函数使数据增加一个维度,变成[batch_size, 1, sequence_length, embedding_size]。现在的数据才能做卷积,因为在传统CNN中,输入数据就应该是[batch_size, in_channel, height, width]这种维度

TextCNN的PyTorch实现_第3张图片

[batch_size, 1, 3, 2]的输入数据通过nn.Conv2d(1, 3, (2, 2))的卷积之后,得到的就是[batch_size, 3, 2, 1]的数据,由于经过ReLU激活函数是不改变维度的,所以就没画出来。最后经过一个nn.MaxPool2d((2, 1))池化,得到的数据维度就是[batch_size, 3, 1, 1]

TextCNN的PyTorch实现_第4张图片

训练

model = TextCNN().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)

# Training
for epoch in range(5000):
  for batch_x, batch_y in loader:
    batch_x, batch_y = batch_x.to(device), batch_y.to(device)
    pred = model(batch_x)
    loss = criterion(pred, batch_y)
    if (epoch + 1) % 1000 == 0:
        print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

测试

# Test
test_text = 'i hate me'
tests = [[word2idx[n] for n in test_text.split()]]
test_batch = torch.LongTensor(tests).to(device)
# Predict
model = model.eval()
predict = model(test_batch).data.max(1, keepdim=True)[1]
if predict[0][0] == 0:
    print(test_text,"is Bad Mean...")
else:
    print(test_text,"is Good Mean!!")

完整代码如下:

'''
  code by Tae Hwan Jung(Jeff Jung) @graykode, modify by wmathor
'''
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
import torch.nn.functional as F

dtype = torch.FloatTensor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 3 words sentences (=sequence_length is 3)
sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
labels = [1, 1, 1, 0, 0, 0]  # 1 is good, 0 is not good.

# TextCNN Parameter
embedding_size = 2
sequence_length = len(sentences[0]) # every sentences contains sequence_length(=3) words
num_classes = 2  # 0 or 1
batch_size = 3

word_list = " ".join(sentences).split()
vocab = list(set(word_list))
word2idx = {w: i for i, w in enumerate(vocab)}
vocab_size = len(vocab)

def make_data(sentences, labels):
  inputs = []
  for sen in sentences:
      inputs.append([word2idx[n] for n in sen.split()])

  targets = []
  for out in labels:
      targets.append(out) # To using Torch Softmax Loss function
  return inputs, targets

input_batch, target_batch = make_data(sentences, labels)
input_batch, target_batch = torch.LongTensor(input_batch), torch.LongTensor(target_batch)

dataset = Data.TensorDataset(input_batch, target_batch)
loader = Data.DataLoader(dataset, batch_size, True)

class TextCNN(nn.Module):
    def __init__(self):
        super(TextCNN, self).__init__()
        self.W = nn.Embedding(vocab_size, embedding_size)
        output_channel = 3
        self.conv = nn.Sequential(
            # conv : [input_channel(=1), output_channel, (filter_height, filter_width), stride=1]
            nn.Conv2d(1, output_channel, (2, embedding_size)),
            nn.ReLU(),
            # pool : ((filter_height, filter_width))
            nn.MaxPool2d((2, 1)),
        )
        # fc
        self.fc = nn.Linear(output_channel, num_classes)

    def forward(self, X):
      '''
      X: [batch_size, sequence_length]
      '''
      batch_size = X.shape[0]
      embedding_X = self.W(X) # [batch_size, sequence_length, embedding_size]
      embedding_X = embedding_X.unsqueeze(1) # add channel(=1) [batch, channel(=1), sequence_length, embedding_size]
      conved = self.conv(embedding_X) # [batch_size, output_channel, 1, 1]
      flatten = conved.view(batch_size, -1) # [batch_size, output_channel*1*1]
      output = self.fc(flatten)
      return output

model = TextCNN().to(device)
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.Adam(model.parameters(), lr=1e-3)

# Training
for epoch in range(5000):
  for batch_x, batch_y in loader:
    batch_x, batch_y = batch_x.to(device), batch_y.to(device)
    pred = model(batch_x)
    loss = criterion(pred, batch_y)
    if (epoch + 1) % 1000 == 0:
        print('Epoch:', '%04d' % (epoch + 1), 'loss =', '{:.6f}'.format(loss))

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    
# Test
test_text = 'i hate me'
tests = [[word2idx[n] for n in test_text.split()]]
test_batch = torch.LongTensor(tests).to(device)
# Predict
model = model.eval()
predict = model(test_batch).data.max(1, keepdim=True)[1]
if predict[0][0] == 0:
    print(test_text,"is Bad Mean...")
else:
    print(test_text,"is Good Mean!!")

如果你仔细看过我参考的源码,就会发现他写的很奇怪

for filter_size in filter_sizes:
            # conv : [input_channel(=1), output_channel(=3), (filter_height, filter_width), bias_option]
            conv = nn.Conv2d(1, num_filters, (filter_size, embedding_size), bias=True)(embedded_chars)
            h = F.relu(conv)
            # mp : ((filter_height, filter_width))
            mp = nn.MaxPool2d((sequence_length - filter_size + 1, 1))
            # pooled : [batch_size(=6), output_height(=1), output_width(=1), output_channel(=3)]
            pooled = mp(h).permute(0, 3, 2, 1)
            pooled_outputs.append(pooled)

他使用了一个循环,对原始数据做了多次卷积,得到多个feature map。这个做法奇怪在于,如果说想要得到更多feature map,修改nn.Conv2d()中output_channel参数即可,为什么要这样做多次循环?

如果作者本来的意思是想搞一个深层卷积神经网络,也说不通,因为他这个写法就没有这样的效果,他的循环始终是对原始输入数据做运算,而不是对卷积后的数据再运算

你可能感兴趣的:(深度学习)