NumPy学的还不错?来试试这20题

来源:早起Python

本文约2000字,建议阅读6分钟。

每题都有多种解法,所以你应该思考是否有更好的思路。

又到了NumPy进阶修炼专题。NumPy大家应该不陌生了,看了太多的原理讲解之后,用刷题来学习是最有效的方法,本文将带来20个NumPy经典问题,附赠20段实用代码,拿走就用,建议打开Jupyter Notebook边敲边看。

1、数据查找

问:如何获得两个数组之间的相同元素

输入

import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings("ignore")
arr1 = np.random.randint(10,6,6)
arr2 = np.random.randint(10,6,6)

答案

arr1 = np.random.randint(10,6,6)
arr2 = np.random.randint(10,6,6)
print("arr1: %s"%arr1)
print("arr2: %s"%arr2)
np.intersect1d(arr1,arr2)

NumPy学的还不错?来试试这20题_第1张图片

2、数据修改

问:如何从一个数组中删除另一个数组存在的元素

输入

arr1 = np.random.randint(10,6,6)
arr2 = np.random.randint(10,6,6)

答案:

arr1 = np.random.randint(1,10,10)
arr2 = np.random.randint(1,10,10)
print("arr1: %s"%arr1)
print("arr2: %s"%arr2)
np.setdiff1d(arr1,arr2)

NumPy学的还不错?来试试这20题_第2张图片

3、数据修改

问:如何修改一个数组为只读模式

输入:

arr1 = np.random.randint(1,10,10)

答案:

arr1 = np.random.randint(1,10,10)
arr1.flags.writeable = False

NumPy学的还不错?来试试这20题_第3张图片

4、数据转换

问:如何将list转为numpy数组

输入:

a = [1,2,3,4,5]

答案:

a = [1,2,3,4,5]
np.array(a)

NumPy学的还不错?来试试这20题_第4张图片

5、数据转换

问:如何将pd.DataFrame转为numpy数组

输入:

df = pd.DataFrame({'A':[1,2,3],'B':[4,5,6],'C':[7,8,9]})

答案:

df.values

NumPy学的还不错?来试试这20题_第5张图片

6、数据分析

问:如何使用numpy进行描述性统计分析

输入:

arr1 = np.random.randint(1,10,10)
arr2 = np.random.randint(1,10,10)

答案:

arr1 = np.random.randint(1,10,10)
arr2 = np.random.randint(1,10,10)

print("arr1的平均数为:%s" %np.mean(arr1))
print("arr1的中位数为:%s" %np.median(arr1))
print("arr1的方差为:%s" %np.var(arr1))
print("arr1的标准差为:%s" %np.std(arr1))
print("arr1,arr的相关性矩阵为:%s" %np.cov(arr1,arr2))
print("arr1,arr的协方差矩阵为:%s" %np.corrcoef(arr1,arr2))

NumPy学的还不错?来试试这20题_第6张图片

7、数据抽样

问:如何使用numpy进行概率抽样

arr = np.array([1,2,3,4,5])

输入:

arr = np.array([1,2,3,4,5])
np.random.choice(arr,10,p = [0.1,0.1,0.1,0.1,0.6])

答案:

NumPy学的还不错?来试试这20题_第7张图片

8、数据创建

问:如何为数据创建副本

输入:

arr = np.array([1,2,3,4,5])

答案:

#对副本数据进行修改,不会影响到原始数据
arr = np.array([1,2,3,4,5])
arr1 = arr.copy()

9、数据切片

问:如何对数组进行切片

输入:

arr = np.arange(10)

备注从索引2开始到索引8停止,间隔为2

答案:

arr = np.arange(10)
a = slice(2,8,2)
arr[a] #等价于arr[2:8:2]

NumPy学的还不错?来试试这20题_第8张图片

10、字符串操作

问:如何使用NumPy操作字符串

输入:

str1 = ['I love']
str2 = [' Python']

答案:

#拼接字符串
str1 = ['I love']
str2 = [' Python']
print(np.char.add(str1,str2))

#大写首字母
str3 = np.char.add(str1,str2)
print(np.char.title(str3))

NumPy学的还不错?来试试这20题_第9张图片

11、数据修改

问:如何对数据向上/下取整

输入:

arr = np.random.uniform(0,10,10)

答案:

arr = np.random.uniform(0,10,10)
print(arr)
###向上取整
print(np.ceil(arr))
###向下取整
print(np.floor(arr) )

NumPy学的还不错?来试试这20题_第10张图片

12、格式修改

问:如何取消默认科学计数显示数据

答案:

np.set_printoptions(suppress=True)

13、数据修改

问:如何使用NumPy对二维数组逆序

输入:

arr = np.random.randint(1,10,[3,3])

答案:

arr = np.random.randint(1,10,[3,3])
print(arr)
print('列逆序')
print(arr[:, -1::-1])
print('行逆序')
print(arr[-1::-1, :])

NumPy学的还不错?来试试这20题_第11张图片

14、数据查找

问:如何使用NumPy根据位置查找元素

输入:

arr1 = np.random.randint(1,10,5)
arr2 = np.random.randint(1,20,10)

备注:在arr2中根据arr1中元素以位置查找

答案:

arr1 = np.random.randint(1,10,5)
arr2 = np.random.randint(1,20,10)
print(arr1)
print(arr2)
print(np.take(arr2,arr1))

NumPy学的还不错?来试试这20题_第12张图片

15、数据计算

问:如何使用numpy求余数

输入:

a = 10
b = 3

答案:

np.mod(a,b)

16、数据计算

问:如何使用NumPy进行矩阵SVD分解

输入:

A = np.random.randint(1,10,[3,3])

答案:

np.linalg.svd(A)

NumPy学的还不错?来试试这20题_第13张图片

17、数据筛选

问:如何使用NumPy多条件筛选数据

输入:

arr = np.random.randint(1,20,10)

答案:

arr = np.random.randint(1,20,10)
print(arr[(arr>1)&(arr<7)&(arr%2==0)])

18、数据修改

问:如何使用NumPy对数组分类

备注:将大于等于7,或小于3的元素标记为1,其余为0

输入:

arr = np.random.randint(1,20,10)

答案:

arr = np.random.randint(1,20,10)
print(arr)
print(np.piecewise(arr, [arr < 3, arr >= 7], [-1, 1]))

NumPy学的还不错?来试试这20题_第14张图片

19、数据修改

问:如何使用NumPy压缩矩阵

备注:从数组的形状中删除单维度条目,即把shape中为1的维度去掉

输入:

arr = np.random.randint(1,10,[3,1])

答案:

arr = np.random.randint(1,10,[3,1])
print(arr)
print(np.squeeze(arr))

NumPy学的还不错?来试试这20题_第15张图片

20、数据计算

问:如何使用numpy求解线性方程组

输入:

A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]])
b = np.array([9, 8, 3])

备注:求解Ax=b

答案:

A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]])
b = np.array([9, 8, 3])
x = np.linalg.solve(A, b)
print(x)

NumPy学的还不错?来试试这20题_第16张图片

以上就是我总结的NumPy经典20题,你都会吗?并且每题我都只给出了一种解法,而事实上每题都有多种解法,所以你应该思考是否有更好的思路。

编辑:文婧

你可能感兴趣的:(numpy,python,数据挖掘,navicat,anaconda)