数据准备:
cookie1,2015-04-10 10:00:02,url2
cookie1,2015-04-10 10:00:00,url1
cookie1,2015-04-10 10:03:04,1url3
cookie1,2015-04-10 10:50:05,url6
cookie1,2015-04-10 11:00:00,url7
cookie1,2015-04-10 10:10:00,url4
cookie1,2015-04-10 10:50:01,url5
cookie2,2015-04-10 10:00:02,url22
cookie2,2015-04-10 10:00:00,url11
cookie2,2015-04-10 10:03:04,1url33
cookie2,2015-04-10 10:50:05,url66
cookie2,2015-04-10 11:00:00,url77
cookie2,2015-04-10 10:10:00,url44
cookie2,2015-04-10 10:50:01,url55
CREATE TABLE click (
cookieid string,
createtime string, --页面访问时间
url STRING --被访问页面
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
load data local inpath '/root/data/interview/data4'
hive> select * from click;
OK
cookie1 2015-04-10 10:00:02 url2
cookie1 2015-04-10 10:00:00 url1
cookie1 2015-04-10 10:03:04 1url3
cookie1 2015-04-10 10:50:05 url6
cookie1 2015-04-10 11:00:00 url7
cookie1 2015-04-10 10:10:00 url4
cookie1 2015-04-10 10:50:01 url5
cookie2 2015-04-10 10:00:02 url22
cookie2 2015-04-10 10:00:00 url11
cookie2 2015-04-10 10:03:04 1url33
cookie2 2015-04-10 10:50:05 url66
cookie2 2015-04-10 11:00:00 url77
cookie2 2015-04-10 10:10:00 url44
cookie2 2015-04-10 10:50:01 url55
1、LAG
LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值
第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)
实际应用:
可用于比较每个用户浏览次数与前一天的浏览次数进行比较,查询返回当前浏览次数以及前一天的浏览数量
SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAG(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS last_1_time,
LAG(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS last_2_time
FROM click;
cookieid createtime url rn last_1_time last_2_time
-------------------------------------------------------------------------------------------
cookie1 2015-04-10 10:00:00 url1 1 1970-01-01 00:00:00 NULL
cookie1 2015-04-10 10:00:02 url2 2 2015-04-10 10:00:00 NULL
cookie1 2015-04-10 10:03:04 1url3 3 2015-04-10 10:00:02 2015-04-10 10:00:00
cookie1 2015-04-10 10:10:00 url4 4 2015-04-10 10:03:04 2015-04-10 10:00:02
cookie1 2015-04-10 10:50:01 url5 5 2015-04-10 10:10:00 2015-04-10 10:03:04
cookie1 2015-04-10 10:50:05 url6 6 2015-04-10 10:50:01 2015-04-10 10:10:00
cookie1 2015-04-10 11:00:00 url7 7 2015-04-10 10:50:05 2015-04-10 10:50:01
cookie2 2015-04-10 10:00:00 url11 1 1970-01-01 00:00:00 NULL
cookie2 2015-04-10 10:00:02 url22 2 2015-04-10 10:00:00 NULL
cookie2 2015-04-10 10:03:04 1url33 3 2015-04-10 10:00:02 2015-04-10 10:00:00
cookie2 2015-04-10 10:10:00 url44 4 2015-04-10 10:03:04 2015-04-10 10:00:02
cookie2 2015-04-10 10:50:01 url55 5 2015-04-10 10:10:00 2015-04-10 10:03:04
cookie2 2015-04-10 10:50:05 url66 6 2015-04-10 10:50:01 2015-04-10 10:10:00
cookie2 2015-04-10 11:00:00 url77 7 2015-04-10 10:50:05 2015-04-10 10:50:01
last_1_time: 指定了往上第1行的值,default为'1970-01-01 00:00:00'
cookie1第一行,往上1行为NULL,因此取默认值 1970-01-01 00:00:00
cookie1第三行,往上1行值为第二行值,2015-04-10 10:00:02
cookie1第六行,往上1行值为第五行值,2015-04-10 10:50:01
last_2_time: 指定了往上第2行的值,为指定默认值
cookie1第一行,往上2行为NULL
cookie1第二行,往上2行为NULL
cookie1第四行,往上2行为第二行值,2015-04-10 10:00:02
cookie1第七行,往上2行为第五行值,2015-04-10 10:50:01
2、LEAD
与LAG相反
LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值
第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)
实际应用:
为了比较每个用户浏览次数与后一天的浏览次数进行比较,查询返回当前浏览次数以及后一天的浏览数量。
SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LEAD(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY createtime) AS next_1_time,
LEAD(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS next_2_time
FROM click;
cookieid createtime url rn next_1_time next_2_time
-------------------------------------------------------------------------------------------
cookie1 2015-04-10 10:00:00 url1 1 2015-04-10 10:00:02 2015-04-10 10:03:04
cookie1 2015-04-10 10:00:02 url2 2 2015-04-10 10:03:04 2015-04-10 10:10:00
cookie1 2015-04-10 10:03:04 1url3 3 2015-04-10 10:10:00 2015-04-10 10:50:01
cookie1 2015-04-10 10:10:00 url4 4 2015-04-10 10:50:01 2015-04-10 10:50:05
cookie1 2015-04-10 10:50:01 url5 5 2015-04-10 10:50:05 2015-04-10 11:00:00
cookie1 2015-04-10 10:50:05 url6 6 2015-04-10 11:00:00 NULL
cookie1 2015-04-10 11:00:00 url7 7 1970-01-01 00:00:00 NULL
cookie2 2015-04-10 10:00:00 url11 1 2015-04-10 10:00:02 2015-04-10 10:03:04
cookie2 2015-04-10 10:00:02 url22 2 2015-04-10 10:03:04 2015-04-10 10:10:00
cookie2 2015-04-10 10:03:04 1url33 3 2015-04-10 10:10:00 2015-04-10 10:50:01
cookie2 2015-04-10 10:10:00 url44 4 2015-04-10 10:50:01 2015-04-10 10:50:05
cookie2 2015-04-10 10:50:01 url55 5 2015-04-10 10:50:05 2015-04-10 11:00:00
cookie2 2015-04-10 10:50:05 url66 6 2015-04-10 11:00:00 NULL
cookie2 2015-04-10 11:00:00 url77 7 1970-01-01 00:00:00 NULL
–逻辑与LAG一样,只不过LAG是往上,LEAD是往下。
3、FIRST_VALUE
取分组内排序后,截止到当前行,第一个值
实际应用:
为了比较每个用户浏览次数与第一天浏览次数进行比较,查询返回当前浏览次数以及第一天浏览次数。
SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1
FROM click;
cookieid createtime url rn first1
---------------------------------------------------------
cookie1 2015-04-10 10:00:00 url1 1 url1
cookie1 2015-04-10 10:00:02 url2 2 url1
cookie1 2015-04-10 10:03:04 1url3 3 url1
cookie1 2015-04-10 10:10:00 url4 4 url1
cookie1 2015-04-10 10:50:01 url5 5 url1
cookie1 2015-04-10 10:50:05 url6 6 url1
cookie1 2015-04-10 11:00:00 url7 7 url1
cookie2 2015-04-10 10:00:00 url11 1 url11
cookie2 2015-04-10 10:00:02 url22 2 url11
cookie2 2015-04-10 10:03:04 1url33 3 url11
cookie2 2015-04-10 10:10:00 url44 4 url11
cookie2 2015-04-10 10:50:01 url55 5 url11
cookie2 2015-04-10 10:50:05 url66 6 url11
cookie2 2015-04-10 11:00:00 url77 7 url11
4、LAST_VALUE
取分组内排序后,截止到当前行,最后一个值
实际应用:
为了比较每个用户浏览次数与最新一天浏览次数进行比较,查询返回当前浏览次数以及最新一天浏览次数。
SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1
FROM click;
cookieid createtime url rn last1
-----------------------------------------------------------------
cookie1 2015-04-10 10:00:00 url1 1 url1
cookie1 2015-04-10 10:00:02 url2 2 url2
cookie1 2015-04-10 10:03:04 1url3 3 1url3
cookie1 2015-04-10 10:10:00 url4 4 url4
cookie1 2015-04-10 10:50:01 url5 5 url5
cookie1 2015-04-10 10:50:05 url6 6 url6
cookie1 2015-04-10 11:00:00 url7 7 url7
cookie2 2015-04-10 10:00:00 url11 1 url11
cookie2 2015-04-10 10:00:02 url22 2 url22
cookie2 2015-04-10 10:03:04 1url33 3 1url33
cookie2 2015-04-10 10:10:00 url44 4 url44
cookie2 2015-04-10 10:50:01 url55 5 url55
cookie2 2015-04-10 10:50:05 url66 6 url66
cookie2 2015-04-10 11:00:00 url77 7 url77
如果不指定ORDER BY,则默认按照记录在文件中的偏移量进行排序,会出现错误的结果
SELECT cookieid,
createtime,
url,
FIRST_VALUE(url) OVER(PARTITION BY cookieid) AS first2
FROM click;
cookieid createtime url first2
----------------------------------------------
cookie1 2015-04-10 10:00:02 url2 url2
cookie1 2015-04-10 10:00:00 url1 url2
cookie1 2015-04-10 10:03:04 1url3 url2
cookie1 2015-04-10 10:50:05 url6 url2
cookie1 2015-04-10 11:00:00 url7 url2
cookie1 2015-04-10 10:10:00 url4 url2
cookie1 2015-04-10 10:50:01 url5 url2
cookie2 2015-04-10 10:00:02 url22 url22
cookie2 2015-04-10 10:00:00 url11 url22
cookie2 2015-04-10 10:03:04 1url33 url22
cookie2 2015-04-10 10:50:05 url66 url22
cookie2 2015-04-10 11:00:00 url77 url22
cookie2 2015-04-10 10:10:00 url44 url22
cookie2 2015-04-10 10:50:01 url55 url22
SELECT cookieid,
createtime,
url,
LAST_VALUE(url) OVER(PARTITION BY cookieid) AS last2
FROM click;
cookieid createtime url last2
----------------------------------------------
cookie1 2015-04-10 10:00:02 url2 url5
cookie1 2015-04-10 10:00:00 url1 url5
cookie1 2015-04-10 10:03:04 1url3 url5
cookie1 2015-04-10 10:50:05 url6 url5
cookie1 2015-04-10 11:00:00 url7 url5
cookie1 2015-04-10 10:10:00 url4 url5
cookie1 2015-04-10 10:50:01 url5 url5
cookie2 2015-04-10 10:00:02 url22 url55
cookie2 2015-04-10 10:00:00 url11 url55
cookie2 2015-04-10 10:03:04 1url33 url55
cookie2 2015-04-10 10:50:05 url66 url55
cookie2 2015-04-10 11:00:00 url77 url55
cookie2 2015-04-10 10:10:00 url44 url55
cookie2 2015-04-10 10:50:01 url55 url55
如果想要取分组内排序后最后一个值,则需要变通一下:
SELECT cookieid,
createtime,
url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1,
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime DESC) AS last2
FROM click
ORDER BY cookieid,createtime;
cookieid createtime url rn last1 last2
-------------------------------------------------------------
cookie1 2015-04-10 10:00:00 url1 1 url1 url7
cookie1 2015-04-10 10:00:02 url2 2 url2 url7
cookie1 2015-04-10 10:03:04 1url3 3 1url3 url7
cookie1 2015-04-10 10:10:00 url4 4 url4 url7
cookie1 2015-04-10 10:50:01 url5 5 url5 url7
cookie1 2015-04-10 10:50:05 url6 6 url6 url7
cookie1 2015-04-10 11:00:00 url7 7 url7 url7
cookie2 2015-04-10 10:00:00 url11 1 url11 url77
cookie2 2015-04-10 10:00:02 url22 2 url22 url77
cookie2 2015-04-10 10:03:04 1url33 3 1url33 url77
cookie2 2015-04-10 10:10:00 url44 4 url44 url77
cookie2 2015-04-10 10:50:01 url55 5 url55 url77
cookie2 2015-04-10 10:50:05 url66 6 url66 url77
cookie2 2015-04-10 11:00:00 url77 7 url77 url77
提示:在使用分析函数的过程中,要特别注意ORDER BY子句,用的不恰当,统计出的结果就不是你所期望的。
参考博客地址:
http://lxw1234.com/archives/2015/04/190.htm
https://blog.csdn.net/SunnyYoona/article/details/56484919?utm_medium=distribute.pc_relevant_right.none-task-blog-OPENSEARCH-1.nonecase&depth_1-utm_source=distribute.pc_relevant_right.none-task-blog-OPENSEARCH-1.nonecase