这是作者网络安全自学教程系列,主要是关于安全工具和实践操作的在线笔记,特分享出来与博友们学习,希望您喜欢,一起进步。前文分享了基于机器学习的恶意代码检测技术,包括机器学习概述与算法举例、基于机器学习方法的恶意代码检测、机器学习算法在工业界的应用。这篇文章将尝试软件来源分析,结合APT攻击中常见的判断方法,利用Python调用扩展包进行溯源,但也存在局限性。文章同时也普及了PE文件分析和APT溯源相关基础,基础性文章,希望对您有所帮助~
你是否想过如何判断PE软件或APP来源哪个国家或地区呢?你又想过印度是如何确保一键正确卸载中国APP呢?使用黑白名单吗?本文尝试进行软件来源溯源,目前想到的方法包括:
欢迎大家讨论和留言,我们一起进行更深入的尝试和安全测试 O(∩_∩)O
作者作为网络安全的小白,分享一些自学基础教程给大家,主要是关于安全工具和实践操作的在线笔记,希望您们喜欢。同时,更希望您能与我一起操作和进步,后续将深入学习网络安全和系统安全知识并分享相关实验。总之,希望该系列文章对博友有所帮助,写文不易,大神们不喜勿喷,谢谢!如果文章对您有帮助,将是我创作的最大动力,点赞、评论、私聊均可,一起加油喔~
作者的github资源:
软件安全:https://github.com/eastmountyxz/Software-Security-Course
其他工具:https://github.com/eastmountyxz/NetworkSecuritySelf-study
Windows-Hacker:https://github.com/eastmountyxz/Windows-Hacker-Exp
声明:本人坚决反对利用教学方法进行犯罪的行为,一切犯罪行为必将受到严惩,绿色网络需要我们共同维护,更推荐大家了解它们背后的原理,更好地进行防护。
前文学习:
[网络安全自学篇] 一.入门笔记之看雪Web安全学习及异或解密示例
[网络安全自学篇] 二.Chrome浏览器保留密码功能渗透解析及登录加密入门笔记
[网络安全自学篇] 三.Burp Suite工具安装配置、Proxy基础用法及暴库示例
[网络安全自学篇] 四.实验吧CTF实战之WEB渗透和隐写术解密
[网络安全自学篇] 五.IDA Pro反汇编工具初识及逆向工程解密实战
[网络安全自学篇] 六.OllyDbg动态分析工具基础用法及Crakeme逆向
[网络安全自学篇] 七.快手视频下载之Chrome浏览器Network分析及Python爬虫探讨
[网络安全自学篇] 八.Web漏洞及端口扫描之Nmap、ThreatScan和DirBuster工具
[网络安全自学篇] 九.社会工程学之基础概念、IP获取、IP物理定位、文件属性
[网络安全自学篇] 十.论文之基于机器学习算法的主机恶意代码
[网络安全自学篇] 十一.虚拟机VMware+Kali安装入门及Sqlmap基本用法
[网络安全自学篇] 十二.Wireshark安装入门及抓取网站用户名密码(一)
[网络安全自学篇] 十三.Wireshark抓包原理(ARP劫持、MAC泛洪)及数据流追踪和图像抓取(二)
[网络安全自学篇] 十四.Python攻防之基础常识、正则表达式、Web编程和套接字通信(一)
[网络安全自学篇] 十五.Python攻防之多线程、C段扫描和数据库编程(二)
[网络安全自学篇] 十六.Python攻防之弱口令、自定义字典生成及网站暴库防护
[网络安全自学篇] 十七.Python攻防之构建Web目录扫描器及ip代理池(四)
[网络安全自学篇] 十八.XSS跨站脚本攻击原理及代码攻防演示(一)
[网络安全自学篇] 十九.Powershell基础入门及常见用法(一)
[网络安全自学篇] 二十.Powershell基础入门及常见用法(二)
[网络安全自学篇] 二十一.GeekPwn极客大赛之安全攻防技术总结及ShowTime
[网络安全自学篇] 二十二.Web渗透之网站信息、域名信息、端口信息、敏感信息及指纹信息收集
[网络安全自学篇] 二十三.基于机器学习的恶意请求识别及安全领域中的机器学习
[网络安全自学篇] 二十四.基于机器学习的恶意代码识别及人工智能中的恶意代码检测
[网络安全自学篇] 二十五.Web安全学习路线及木马、病毒和防御初探
[网络安全自学篇] 二十六.Shodan搜索引擎详解及Python命令行调用
[网络安全自学篇] 二十七.Sqlmap基础用法、CTF实战及请求参数设置(一)
[网络安全自学篇] 二十八.文件上传漏洞和Caidao入门及防御原理(一)
[网络安全自学篇] 二十九.文件上传漏洞和IIS6.0解析漏洞及防御原理(二)
[网络安全自学篇] 三十.文件上传漏洞、编辑器漏洞和IIS高版本漏洞及防御(三)
[网络安全自学篇] 三十一.文件上传漏洞之Upload-labs靶场及CTF题目01-10(四)
[网络安全自学篇] 三十二.文件上传漏洞之Upload-labs靶场及CTF题目11-20(五)
[网络安全自学篇] 三十三.文件上传漏洞之绕狗一句话原理和绕过安全狗(六)
[网络安全自学篇] 三十四.Windows系统漏洞之5次Shift漏洞启动计算机
[网络安全自学篇] 三十五.恶意代码攻击溯源及恶意样本分析
[网络安全自学篇] 三十六.WinRAR漏洞复现(CVE-2018-20250)及恶意软件自启动劫持
[网络安全自学篇] 三十七.Web渗透提高班之hack the box在线靶场注册及入门知识(一)
[网络安全自学篇] 三十八.hack the box渗透之BurpSuite和Hydra密码爆破及Python加密Post请求(二)
[网络安全自学篇] 三十九.hack the box渗透之DirBuster扫描路径及Sqlmap高级注入用法(三)
[网络安全自学篇] 四十.phpMyAdmin 4.8.1后台文件包含漏洞复现及详解(CVE-2018-12613)
[网络安全自学篇] 四十一.中间人攻击和ARP欺骗原理详解及漏洞还原
[网络安全自学篇] 四十二.DNS欺骗和钓鱼网站原理详解及漏洞还原
[网络安全自学篇] 四十三.木马原理详解、远程服务器IPC$漏洞及木马植入实验
[网络安全自学篇] 四十四.Windows远程桌面服务漏洞(CVE-2019-0708)复现及详解
[网络安全自学篇] 四十五.病毒详解及批处理病毒制作(自启动、修改密码、定时关机、蓝屏、进程关闭)
[网络安全自学篇] 四十六.微软证书漏洞CVE-2020-0601 (上)Windows验证机制及可执行文件签名复现
[网络安全自学篇] 四十七.微软证书漏洞CVE-2020-0601 (下)Windows证书签名及HTTPS网站劫持
[网络安全自学篇] 四十八.Cracer第八期——(1)安全术语、Web渗透流程、Windows基础、注册表及黑客常用DOS命令
[网络安全自学篇] 四十九.Procmon软件基本用法及文件进程、注册表查看
[网络安全自学篇] 五十.虚拟机基础之安装XP系统、文件共享、网络快照设置及Wireshark抓取BBS密码
[网络安全自学篇] 五十一.恶意样本分析及HGZ木马控制目标服务器
[网络安全自学篇] 五十二.Windows漏洞利用之栈溢出原理和栈保护GS机制
[网络安全自学篇] 五十三.Windows漏洞利用之Metasploit实现栈溢出攻击及反弹shell
[网络安全自学篇] 五十四.Windows漏洞利用之基于SEH异常处理机制的栈溢出攻击及shell提取
[网络安全自学篇] 五十五.Windows漏洞利用之构建ROP链绕过DEP并获取Shell
[网络安全自学篇] 五十六.i春秋老师分享小白渗透之路及Web渗透技术总结
[网络安全自学篇] 五十七.PE文件逆向之什么是数字签名及Signtool签名工具详解(一)
[网络安全自学篇] 五十八.Windows漏洞利用之再看CVE-2019-0708及Metasploit反弹shell
[网络安全自学篇] 五十九.Windows漏洞利用之MS08-067远程代码执行漏洞复现及shell深度提权
[网络安全自学篇] 六十.Cracer第八期——(2)五万字总结Linux基础知识和常用渗透命令
[网络安全自学篇] 六十一.PE文件逆向之数字签名详细解析及Signcode、PEView、010Editor、Asn1View等工具用法(二)
[网络安全自学篇] 六十二.PE文件逆向之PE文件解析、PE编辑工具使用和PE结构修改(三)
[网络安全自学篇] 六十三.hack the box渗透之OpenAdmin题目及蚁剑管理员提权(四)
[网络安全自学篇] 六十四.Windows漏洞利用之SMBv3服务远程代码执行漏洞(CVE-2020-0796)复现及详解
[网络安全自学篇] 六十五.Vulnhub靶机渗透之环境搭建及JIS-CTF入门和蚁剑提权示例(一)
[网络安全自学篇] 六十六.Vulnhub靶机渗透之DC-1提权和Drupal漏洞利用(二)
[网络安全自学篇] 六十七.WannaCry勒索病毒复现及分析(一)Python利用永恒之蓝及Win7勒索加密
[网络安全自学篇] 六十八.WannaCry勒索病毒复现及分析(二)MS17-010利用及病毒解析
[网络安全自学篇] 六十九.宏病毒之入门基础、防御措施、自发邮件及APT28样本分析
[网络安全自学篇] 七十.WannaCry勒索病毒复现及分析(三)蠕虫传播机制分析及IDA和OD逆向
[网络安全自学篇] 七十一.深信服分享之外部威胁防护和勒索病毒对抗
[网络安全自学篇] 七十二.逆向分析之OllyDbg动态调试工具(一)基础入门及TraceMe案例分析
[网络安全自学篇] 七十三.WannaCry勒索病毒复现及分析(四)蠕虫传播机制全网源码详细解读
[网络安全自学篇] 七十四.APT攻击检测溯源与常见APT组织的攻击案例
[网络安全自学篇] 七十五.Vulnhub靶机渗透之bulldog信息收集和nc反弹shell(三)
[网络安全自学篇] 七十六.逆向分析之OllyDbg动态调试工具(二)INT3断点、反调试、硬件断点与内存断点
[网络安全自学篇] 七十七.恶意代码与APT攻击中的武器(强推Seak老师)
[网络安全自学篇] 七十八.XSS跨站脚本攻击案例分享及总结(二)
[网络安全自学篇] 七十九.Windows PE病毒原理、分类及感染方式详解
[网络安全自学篇] 八十.WHUCTF之WEB类解题思路WP(代码审计、文件包含、过滤绕过、SQL注入)
[网络安全自学篇] 八十一.WHUCTF之WEB类解题思路WP(文件上传漏洞、冰蝎蚁剑、反序列化phar)
[网络安全自学篇] 八十二.WHUCTF之隐写和逆向类解题思路WP(文字解密、图片解密、佛语解码、冰蝎流量分析、逆向分析)
[网络安全自学篇] 八十三.WHUCTF之CSS注入、越权、csrf-token窃取及XSS总结
[网络安全自学篇] 八十四.《Windows黑客编程技术详解》之VS环境配置、基础知识及DLL延迟加载详解
[网络安全自学篇] 八十五.《Windows黑客编程技术详解》之注入技术详解(全局钩子、远线程钩子、突破Session 0注入、APC注入)
[网络安全自学篇] 八十六.威胁情报分析之Python抓取FreeBuf网站APT文章(上)
[网络安全自学篇] 八十七.恶意代码检测技术详解及总结
[网络安全自学篇] 八十八.基于机器学习的恶意代码检测技术详解
前文欣赏:
[渗透&攻防] 一.从数据库原理学习网络攻防及防止SQL注入
[渗透&攻防] 二.SQL MAP工具从零解读数据库及基础用法
[渗透&攻防] 三.数据库之差异备份及Caidao利器
[渗透&攻防] 四.详解MySQL数据库攻防及Fiddler神器分析数据包
什么是PE文件?
PE文件的全称是Portable Executable,意为可移植的可执行的文件,常见的EXE、DLL、OCX、SYS、COM都是PE文件,PE文件是微软Windows操作系统上的程序文件(可能是间接被执行,如DLL)。
EXE文件格式:
为什么要重点学习这种文件格式呢?
可执行程序是具有不同的形态的,比如用户眼中的QQ如下图所示。
本质上,QQ如下图所示。
PE文件格式总体结构
接着让我们来欣赏下PE文件格式总体结构图,包括:MZ头部、DOS stub、PE文件头、可选文件头、节表、节等。
本文的第二部分我们将对PE文件格式进行详细解析。比如,MZ头文件是定位PE文件头开始位置,用于PE文件合法性检测。DOS下运行该程序时,会提示用户“This Program cannot be run in DOS mode”。
PE文件格式与恶意软件的关系
PE文件解析常用工具包括:
该部分实验内容:
PE文件结构如下图所示,我推荐大家使用010Editor工具及其模板来进行PE文件分析。
MZ头部+DOS stub+PE文件头+可选文件头+节表+节
(1) 使用010Editor工具打开PE文件,并运行模板。
该PE文件可分为若干结构,如下图所示。
(2) MZ文件头(000h-03fh)。
下图为hello-2.5.exe的MZ文件头,该部分固定大小为40H个字节。偏移3cH处字段Offset to New EXE Header,指示“NT映象头的偏移地址”,其中000000B0是NT映象头的文件偏移地址,定位PE文件头开始位置,用于PE文件合法性检验。
000000B0指向PE文件头开始位置。
(3) DOS插桩程序(040h-0afh)
DOS Stub部分大小不固定,位于MZ文件头和NT映象头之间,可由MZ文件头中的Offset to New EXE Header字段确定。下图为hello-2.5.exe中的该部分内容。
(4) PE文件头(0b0h-1a7h)
该部分包括PE标识、映像文件头、可选文件头。
对应解析如下图所示,包括PE标识、X86架构、3个节、文件生成时间、COFF便宜、可选头大小、文件信息标记等。
010Editor使用模板定位PE文件各节点信息。
PE文件可选文件头224字节,其对应的字段信息如下所示:
typedef struct _IMAGE_OPTIONAL_HEADER {
WORD Magic; /*机器型号,判断是PE是32位还是64位*/
BYTE MajorLinkerVersion; /*连接器版本号高版本*/
BYTE MinorLinkerVersion; /*连接器版本号低版本,组合起来就是 5.12 其中5是高版本,C是低版本*/
DWORD SizeOfCode; /*代码节的总大小(512为一个磁盘扇区)*/
DWORD SizeOfInitializedData; /*初始化数据的节的总大小,也就是.data*/
DWORD SizeOfUninitializedData; /*未初始化数据的节的大小,也就是 .data ? */
DWORD AddressOfEntryPoint; /*程序执行入口(OEP) RVA(相对偏移)*/
DWORD BaseOfCode; /*代码的节的起始RVA(相对偏移)也就是代码区的偏移,偏移+模块首地址定位代码区*/
DWORD BaseOfData; /*数据结的起始偏移(RVA),同上*/
DWORD ImageBase; /*程序的建议模块基址(意思就是说作参考用的,模块地址在哪里)*/
DWORD SectionAlignment; /*内存中的节对齐*/
DWORD FileAlignment; /*文件中的节对齐*/
WORD MajorOperatingSystemVersion; /*操作系统版本号高位*/
WORD MinorOperatingSystemVersion; /*操作系统版本号低位*/
WORD MajorImageVersion; /*PE版本号高位*/
WORD MinorImageVersion; /*PE版本号低位*/
WORD MajorSubsystemVersion; /*子系统版本号高位*/
WORD MinorSubsystemVersion; /*子系统版本号低位*/
DWORD Win32VersionValue; /*32位系统版本号值,注意只能修改为4 5 6表示操作系统支持nt4.0 以上,5的话依次类推*/
DWORD SizeOfImage; /*整个程序在内存中占用的空间(PE映尺寸)*/
DWORD SizeOfHeaders; /*所有头(头的结构体大小)+节表的大小*/
DWORD CheckSum; /*校验和,对于驱动程序,可能会使用*/
WORD Subsystem; /*文件的子系统 :重要*/
WORD DllCharacteristics; /*DLL文件属性,也可以成为特性,可能DLL文件可以当做驱动程序使用*/
DWORD SizeOfStackReserve; /*预留的栈的大小*/
DWORD SizeOfStackCommit; /*立即申请的栈的大小(分页为单位)*/
DWORD SizeOfHeapReserve; /*预留的堆空间大小*/
DWORD SizeOfHeapCommit; /*立即申请的堆的空间的大小*/
DWORD LoaderFlags; /*与调试有关*/
DWORD NumberOfRvaAndSizes; /*下面的成员,数据目录结构的项目数量*/
IMAGE_DATA_DIRECTORY DataDirectory[16]; /*数据目录,默认16个,16是宏,这里方便直接写成16*/
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;
(5) 节表(1a8h-21fh)
该结构包括3个节,对应上图的3个struct IMAGE_SECTION_HEADER,即“.test”、“.rdata”、“.data”节,其偏移地址对应下图紫色区域,分别是400、600、800的位置。
(6) 3个节
注意,代码节“.text”前46H为数据,后面全是0位填充值,为了实现文件的200H对齐,所以代码节是400H到5ffH。
(7) 引入函数节
⽤来从其他DLL中引⼊函数,引入了kernel32.dll和user32.dll,这个节一般名为“.rdata”。引入函数是被某模块调用的但又不在调用者模块中的函数,用来从其他(系统或第三方写的)DLL中引入函数,例如kernel32.dll、gdi32.dll等。
010Editor打开如下图所示:
详细标注信息如下图所示:(图引自HYQ同学,再此感谢)
(8) 数据节
数据节实际大小58h,对齐后大小200h,地址为800h-9ffh,包括对话框弹出的具体内容。
使用Ollydbg对该程序进行初步调试,了解该程序功能结构,在内存中观察该程序的完整结构。注意,内存对齐单位和文件对齐单位的不同,内容和文件中IAT表内容的不同。
第一步,打开OD加载PE文件。
OD是一款PE文件动态调试器,此时程序断点自动停止在程序入口点00401000H位置。
在010Editor中,我们可以看到,该PE程序基地址是400000h,程序入口地址是1000h,两个相加为加载至内存中的地址,即401000h。
第二步,动态调试程序。
当我们双击地址位置,则可以下断点且变红,比如0040100Fh。
接着查看对应调试快捷键,F7是单步步入,F8是单步步过。
我们直接按F8单步步过,此时的位置会CALL一个MessageBoxA函数。
直接单步步过,此时会弹出第一个对话框,点击“确定”按钮。
第三步,动态调试程序之数据跟随。
接着我们看左下角部分的内存数据,在该区域按下“Ctrl+G”在数据窗口中跟随,输入基地址400000。
此时可以看到加载到内存中的数据,可以看到该数据与010Editor打开的PE文件数据一致的。
接着继续按F8单步步过弹出第二个窗口。
右上角是它寄存器的值,包括各个寄存器中的数据,我们实验中主要使用的寄存器包括EAX、ECX、EDX、EBX等。
接着步过0040102E,它是退出进程ExitProcess的位置,此时进程已经终止,如下图所示。
实验讲到这里,使用OD动态调试的PE文件的基础流程就讲解完毕,后续随着实验深入,我们还会使用该工具。
接着我们尝试通过Python来获取时间戳,python的PE库是pefile,它是用来专门解析PE文件的,可静态分析PE文件。pefile能完成的任务包括:
推荐大家学习官方资料和github文档。
安装扩展包的方法如下:
假设安装成功之后,我们需要对下图所示的软件进行分析,该软件是我在第85篇博客中生成的,大家直接使用即可(文章开头的github链接能下载)。
第一步,我们通过010Editor分析PE文件。
其时间戳的输出结果如下:
我们希望通过Python写代码实现自动化提取,为后续自动化溯源提供帮助。
第二步,撰写Python代码实现简单分析。
import pefile
import os,string,shutil,re
PEfile_Path = "MFCApplication.exe"
pe = pefile.PE(PEfile_Path)
print(type(pe))
print(pe)
输出如下图所示结果,这是Python包自定义的PE结构。
squeezed text表示python的一种编程规范要求,简称pep8,你只需要将鼠标放到Squeezed上,右键Copy即可查看内容,显示的是该PE文件的基本结构,如下所示:
----------Parsing Warnings----------
Byte 0xcc makes up 17.8750% of the file's contents. This may indicate truncation / malformation.
Suspicious flags set for section 0. Both IMAGE_SCN_MEM_WRITE and IMAGE_SCN_MEM_EXECUTE are set. This might indicate a packed executable.
----------DOS_HEADER----------
[IMAGE_DOS_HEADER]
0x0 0x0 e_magic: 0x5A4D
0x2 0x2 e_cblp: 0x90
0x4 0x4 e_cp: 0x3
0x6 0x6 e_crlc: 0x0
0x8 0x8 e_cparhdr: 0x4
0xA 0xA e_minalloc: 0x0
0xC 0xC e_maxalloc: 0xFFFF
0xE 0xE e_ss: 0x0
0x10 0x10 e_sp: 0xB8
0x12 0x12 e_csum: 0x0
0x14 0x14 e_ip: 0x0
0x16 0x16 e_cs: 0x0
0x18 0x18 e_lfarlc: 0x40
0x1A 0x1A e_ovno: 0x0
0x1C 0x1C e_res:
0x24 0x24 e_oemid: 0x0
0x26 0x26 e_oeminfo: 0x0
0x28 0x28 e_res2:
0x3C 0x3C e_lfanew: 0x108
----------NT_HEADERS----------
[IMAGE_NT_HEADERS]
0x108 0x0 Signature: 0x4550
----------FILE_HEADER----------
[IMAGE_FILE_HEADER]
0x10C 0x0 Machine: 0x14C
0x10E 0x2 NumberOfSections: 0xA
0x110 0x4 TimeDateStamp: 0x5EEC977D [Fri Jun 19 10:46:21 2020 UTC]
0x114 0x8 PointerToSymbolTable: 0x0
0x118 0xC NumberOfSymbols: 0x0
0x11C 0x10 SizeOfOptionalHeader: 0xE0
0x11E 0x12 Characteristics: 0x102
Flags: IMAGE_FILE_32BIT_MACHINE, IMAGE_FILE_EXECUTABLE_IMAGE
----------OPTIONAL_HEADER----------
[IMAGE_OPTIONAL_HEADER]
0x120 0x0 Magic: 0x10B
0x122 0x2 MajorLinkerVersion: 0xE
0x123 0x3 MinorLinkerVersion: 0x1A
0x124 0x4 SizeOfCode: 0x700C00
0x128 0x8 SizeOfInitializedData: 0x2F1E00
0x12C 0xC SizeOfUninitializedData: 0x0
0x130 0x10 AddressOfEntryPoint: 0x36CE65
0x134 0x14 BaseOfCode: 0x1000
0x138 0x18 BaseOfData: 0x1000
0x13C 0x1C ImageBase: 0x400000
0x140 0x20 SectionAlignment: 0x1000
0x144 0x24 FileAlignment: 0x200
0x148 0x28 MajorOperatingSystemVersion: 0x6
0x14A 0x2A MinorOperatingSystemVersion: 0x0
0x14C 0x2C MajorImageVersion: 0x0
0x14E 0x2E MinorImageVersion: 0x0
0x150 0x30 MajorSubsystemVersion: 0x6
0x152 0x32 MinorSubsystemVersion: 0x0
0x154 0x34 Reserved1: 0x0
0x158 0x38 SizeOfImage: 0xD54000
0x15C 0x3C SizeOfHeaders: 0x400
0x160 0x40 CheckSum: 0x0
0x164 0x44 Subsystem: 0x2
0x166 0x46 DllCharacteristics: 0x8140
0x168 0x48 SizeOfStackReserve: 0x100000
0x16C 0x4C SizeOfStackCommit: 0x1000
0x170 0x50 SizeOfHeapReserve: 0x100000
0x174 0x54 SizeOfHeapCommit: 0x1000
0x178 0x58 LoaderFlags: 0x0
0x17C 0x5C NumberOfRvaAndSizes: 0x10
DllCharacteristics: IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE, IMAGE_DLLCHARACTERISTICS_NX_COMPAT, IMAGE_DLLCHARACTERISTICS_TERMINAL_SERVER_AWARE
----------PE Sections----------
[IMAGE_SECTION_HEADER]
0x200 0x0 Name: .textbss
0x208 0x8 Misc: 0x35B30B
0x208 0x8 Misc_PhysicalAddress: 0x35B30B
0x208 0x8 Misc_VirtualSize: 0x35B30B
0x20C 0xC VirtualAddress: 0x1000
0x210 0x10 SizeOfRawData: 0x0
0x214 0x14 PointerToRawData: 0x0
0x218 0x18 PointerToRelocations: 0x0
0x21C 0x1C PointerToLinenumbers: 0x0
0x220 0x20 NumberOfRelocations: 0x0
0x222 0x22 NumberOfLinenumbers: 0x0
0x224 0x24 Characteristics: 0xE00000A0
Flags: IMAGE_SCN_CNT_CODE, IMAGE_SCN_CNT_UNINITIALIZED_DATA, IMAGE_SCN_MEM_EXECUTE, IMAGE_SCN_MEM_READ, IMAGE_SCN_MEM_WRITE
Entropy: 0.000000 (Min=0.0, Max=8.0)
MD5 hash: d41d8cd98f00b204e9800998ecf8427e
SHA-1 hash: da39a3ee5e6b4b0d3255bfef95601890afd80709
SHA-256 hash: e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855
SHA-512 hash: cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e
....
对应于010Editor分析的结果,前后是一致的。
同时,我们可以输入help(pefile.PE) 查看帮助信息,它定义了pefile包的一些函数和属性。
Help on class PE in module pefile:
class PE(builtins.object)
| PE(name=None, data=None, fast_load=None)
|
| A Portable Executable representation.
|
| This class provides access to most of the information in a PE file.
|
| It expects to be supplied the name of the file to load or PE data
| to process and an optional argument 'fast_load' (False by default)
| which controls whether to load all the directories information,
| which can be quite time consuming.
|
| pe = pefile.PE('module.dll')
| pe = pefile.PE(name='module.dll')
|
| would load 'module.dll' and process it. If the data is already
| available in a buffer the same can be achieved with:
|
| pe = pefile.PE(data=module_dll_data)
|
| The "fast_load" can be set to a default by setting its value in the
| module itself by means, for instance, of a "pefile.fast_load = True".
| That will make all the subsequent instances not to load the
| whole PE structure. The "full_load" method can be used to parse
| the missing data at a later stage.
|
| Basic headers information will be available in the attributes:
|
| DOS_HEADER
| NT_HEADERS
| FILE_HEADER
| OPTIONAL_HEADER
|
| All of them will contain among their attributes the members of the
| corresponding structures as defined in WINNT.H
|
| The raw data corresponding to the header (from the beginning of the
| file up to the start of the first section) will be available in the
| instance's attribute 'header' as a string.
|
| The sections will be available as a list in the 'sections' attribute.
| Each entry will contain as attributes all the structure's members.
|
| Directory entries will be available as attributes (if they exist):
| (no other entries are processed at this point)
|
| DIRECTORY_ENTRY_IMPORT (list of ImportDescData instances)
| DIRECTORY_ENTRY_EXPORT (ExportDirData instance)
| DIRECTORY_ENTRY_RESOURCE (ResourceDirData instance)
| DIRECTORY_ENTRY_DEBUG (list of DebugData instances)
| DIRECTORY_ENTRY_BASERELOC (list of BaseRelocationData instances)
| DIRECTORY_ENTRY_TLS
| DIRECTORY_ENTRY_BOUND_IMPORT (list of BoundImportData instances)
|
| The following dictionary attributes provide ways of mapping different
| constants. They will accept the numeric value and return the string
| representation and the opposite, feed in the string and get the
| numeric constant:
|
| DIRECTORY_ENTRY
| IMAGE_CHARACTERISTICS
| SECTION_CHARACTERISTICS
| DEBUG_TYPE
| SUBSYSTEM_TYPE
| MACHINE_TYPE
| RELOCATION_TYPE
| RESOURCE_TYPE
| LANG
| SUBLANG
......
第三步,撰写代码获取PE文件的方法和属性,比如section。
import pefile
import os,string,shutil,re
PEfile_Path = "MFCApplication.exe"
#解析PE文件
pe = pefile.PE(PEfile_Path)
print(type(pe))
print(pe)
#查看方法和属性
print(dir(pefile.PE))
for section in pe.sections:
print(section)
输出如下结果:
获取导入表信息代码如下:
import pefile
import os,string,shutil,re
PEfile_Path = "MFCApplication.exe"
#解析PE文件
pe = pefile.PE(PEfile_Path)
print(type(pe))
print(pe)
#获取导入表信息
for item in pe.DIRECTORY_ENTRY_IMPORT:
print(item.dll)
for con in item.imports:
print(con.name)
print("") #换行
输出如下所示的结果,包括KERNEL32.dll、USER32.dll等。
b'KERNEL32.dll'
b'RtlUnwind'
b'GetModuleHandleExW'
b'GetCommandLineA'
b'GetSystemInfo'
b'CreateThread'
...
b'USER32.dll'
b'DlgDirSelectExA'
b'FindWindowExA'
b'FindWindowA'
b'SetParent'
b'ChildWindowFromPointEx'
...
b'GDI32.dll'
b'CreateEllipticRgn'
b'CreateFontIndirectA'
b'CreateHatchBrush'
b'CreateICA'
b'CreatePalette'
b'CreatePen'
...
b'MSIMG32.dll'
b'AlphaBlend'
b'GradientFill'
b'TransparentBlt'
b'ADVAPI32.dll'
b'RegCloseKey'
b'RegQueryValueExA'
b'RegCreateKeyExA'
b'RegDeleteKeyA'
...
b'SHELL32.dll'
b'SHGetPathFromIDListA'
b'SHGetSpecialFolderLocation'
b'SHBrowseForFolderA'
b'SHGetDesktopFolder'
b'DragAcceptFiles'
...
b'COMCTL32.dll'
b'InitCommonControlsEx'
...
对应010editor的PE软件分析结果如下:
第四步,分析文件结构及时间戳位置。
同样,我们可以使用stud_PE查看文件属性,该软件用于显示头部、DOs、区段、函数等信息,包括导入表、导出表等,显示该EXE程序加载的DLL文件及函数。
这里我们最关心的内容是“TimeDateStamp”,接下来想办法获取它即可。
typedef struct _IMAGE_FILE_HEADER
{
+04h WORD Machine; // 运行平台
+06h WORD NumberOfSections; // 文件的区块数目
+08h DWORD TimeDateStamp; // 文件创建日期和时间
+0Ch DWORD PointerToSymbolTable; // 指向符号表(主要用于调试)
+10h DWORD NumberOfSymbols; // 符号表中符号个数(同上)
+14h WORD SizeOfOptionalHeader; // IMAGE_OPTIONAL_HEADER32 结构大小
+16h WORD Characteristics; // 文件属性
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;
对应的Python包返回的值如下所示:
第五步,接着我们通过pe.DOS_HEADER、pe.FILE_HEADER等方法获取对应的内容。
import pefile
import os,string,shutil,re
PEfile_Path = "MFCApplication.exe"
#解析PE文件
pe = pefile.PE(PEfile_Path, fast_load=True)
print(type(pe))
print(pe)
#显示DOS_HEADER
print(pe.DOS_HEADER,"\n")
#显示NT_HEADERS
print(pe.NT_HEADERS,"\n")
#显示FILE_HEADER
print(pe.FILE_HEADER,"\n")
#显示OPTIONAL_HEADER
print(pe.OPTIONAL_HEADER,"\n")
输出如下图所示的结构,其中时间戳也在其中。
作者本想通过它指定的方法提取对应的值,但一直失败,但作为长期从事NLP和数据挖掘的程序员,这都不是事,我们通过正则表达式即可提取所需知识。
import pefile
import os,string,shutil,re
PEfile_Path = "MFCApplication.exe"
#解析PE文件
pe = pefile.PE(PEfile_Path, fast_load=True)
print(type(pe))
print(pe)
print(pe.get_imphash())
#显示DOS_HEADER
dh = pe.DOS_HEADER
#显示NT_HEADERS
nh = pe.NT_HEADERS
#显示FILE_HEADER
fh = pe.FILE_HEADER
#显示OPTIONAL_HEADER
oh = pe.OPTIONAL_HEADER
print(type(fh)) #
print(str(fh))
#通过正则表达式获取时间
p = re.compile(r'[[](.*?)[]]', re.I|re.S|re.M) #最小匹配
res = re.findall(p, str(fh))
print(res[1]) #第一个值是IMAGE_FILE_HEADER
# Fri Jun 19 10:46:21 2020 UTC
最终输出结果如下所示,这样我们就完成了Python自动化提取PE软件的时间戳过程。任何一个PE软件都能进行提取,该时间戳也记录了软件的编译时间。
<class 'pefile.PE'>
Squeezed text(347 lines).
<class 'pefile.Structure'>
[IMAGE_FILE_HEADER]
0x10C 0x0 Machine: 0x14C
0x10E 0x2 NumberOfSections: 0xA
0x110 0x4 TimeDateStamp: 0x5EEC977D [Fri Jun 19 10:46:21 2020 UTC]
0x114 0x8 PointerToSymbolTable: 0x0
0x118 0xC NumberOfSymbols: 0x0
0x11C 0x10 SizeOfOptionalHeader: 0xE0
0x11E 0x12 Characteristics: 0x102
Fri Jun 19 10:46:21 2020 UTC
协调世界时,又称世界统一时间、世界标准时间、国际协调时间。由于英文(CUT)和法文(TUC)的缩写不同,作为妥协,简称UTC。协调世界时是以原子时秒长为基础,在时刻上尽量接近于世界时的一种时间计量系统。Python时间解析代码如下:
import pefile
import time
import datetime
import os,string,shutil,re
PEfile_Path = "MFCApplication.exe"
#----------------------------------第一步 解析PE文件-------------------------------
pe = pefile.PE(PEfile_Path, fast_load=True)
print(type(pe))
print(pe)
print(pe.get_imphash())
#显示DOS_HEADER
dh = pe.DOS_HEADER
#显示NT_HEADERS
nh = pe.NT_HEADERS
#显示FILE_HEADER
fh = pe.FILE_HEADER
#显示OPTIONAL_HEADER
oh = pe.OPTIONAL_HEADER
print(type(fh)) #
print(str(fh))
#----------------------------------第二步 获取UTC时间-------------------------------
#通过正则表达式获取时间
p = re.compile(r'[[](.*?)[]]', re.I|re.S|re.M) #最小匹配
res = re.findall(p, str(fh))
print(res[1]) #第一个值是IMAGE_FILE_HEADER
res_time = res[1].replace(" UTC","")
# Fri Jun 19 10:46:21 2020 UTC
#获取当前时间
t = time.ctime()
print(t) # Thu Jul 16 20:42:18 2020
final_time = datetime.datetime.strptime(res_time, '%a %b %d %H:%M:%S %Y')
print(final_time)
# 2020-06-19 10:46:21
输出结果如下,可以看到该EXE的创建时间。如果想转换成时间戳可以进一步处理。
接下来我们需要进一步分析,根据时间戳判断所在区域。
作者在“七十四.APT攻击检测溯源与常见APT组织的攻击案例”文章中普及过,安天公司通过时区溯源白象APT来自南亚地区,这里再进行回顾下。
在过去的四年中,安天的工程师们关注到了中国的机构和用户反复遭遇来自“西南方向”的网络入侵尝试。这些攻击虽进行了一些掩盖和伪装,我们依然可以将其推理回原点——来自南亚次大陆的某个国家。
- 参考文章:白象的舞步——来自南亚次大陆的网络攻击
安天在2014年4月相关文章中披露的针对中国两所大学被攻击的事件,涉及以下六个样本。其中五个样本投放至同一个目标,这些样本间呈现出模块组合作业的特点。
那么,如何溯源该组织所来自的区域呢?
安天通过对样本集的时间戳、时区分析进行分析,发现其来自南亚。样本时间戳是一个十六进制的数据,存储在PE文件头里,该值一般由编译器在开发者创建可执行文件时自动生成,时间单位细化到秒,通常可以认为该值为样本生成时间(GMT时间)。
时间戳的分析需要收集所有可用的可执行文件时间戳,并剔除过早的和明显人为修改的时间,再将其根据特定标准分组统计,如每周的天或小时,并以图形的形式体现,下图是通过小时分组统计结果:
从上图的统计结果来看,如果假设攻击者的工作时间是早上八九点至下午五六点的话,那么将工作时间匹配到一个来自UTC+4或UTC+5时区的攻击者的工作时间。根据我们匹配的攻击者所在时区(UTC+4 或UTC+5),再对照世界时区分布图,就可以来推断攻击者所在的区域或国家。
接着对该攻击组织进行更深入的分析。对这一攻击组织继续综合线索,基于互联网公开信息,进行了画像分析,认为这是一个由10~16人的组成的攻击小组。其中六人的用户ID是cr01nk 、neeru rana、andrew、Yash、Ita nagar、Naga。
在安天的跟踪分析中,发现该组织的部分C&C地址是一些正常的网站,经过分析我们认为,有可能该组织入侵了这些网站,将自己的C&C服务控制代码放到它们的服务器上,以此来隐藏自己的IP信息。同时这种方式还会使安全软件认为连接的是正常的网站,而不会触发安全警报。
基于现有资源可以分析出,“白象二代”组织一名开发人员的ID为“Kanishk”,通过维基百科查询到一个类似单词“Kanishka”,这是一个是梵文译音,中文翻译为“迦腻色迦”,迦腻色伽是贵霜帝国(Kushan Empire)的君主,贵霜帝国主要控制范围在印度河流域。至此推测该APT组织来自南亚某国。
通过这个案例,我们可以通过时区、公开信息、黑客ID、C&C域名进行溯源,并一步步递进。
比如当前北京时间是2020年7月16日晚上9点3分,而UTC时间是13点3分。
但这里存在一个问题,当有很多恶意样本的时候,我们基于多个样本时间戳并结合正常作息时间进行分析,才能判断其来源。但是,如果仅从一个样本进行分析,其准确率还是会有影响,有的恶意软件是深夜发布,也影响了该方法的准确性,同时混淆、加壳、对抗样本也能影响我们的实验效果,但作者仅是提供了一种方法,更深入的研究还在继续,如果您有好的方法也欢迎和我讨论。
这里我们PE软件获取的时间是“2020-06-19 10:46:21”,对应北京时间是19点46分。因为作者习惯晚上写代码,但如果是软件或恶意样本,大公司通常会有正常的作息,从而可以结合海量数据分析来确定最终的软件来源地区或国家。
此时的Python代码如下:
import pefile
import time
import warnings
import datetime
import os,string,shutil,re
#忽略警告
warnings.filterwarnings("ignore")
PEfile_Path = "MFCApplication.exe"
#----------------------------------第一步 解析PE文件-------------------------------
pe = pefile.PE(PEfile_Path, fast_load=True)
print(type(pe))
print(pe)
print(pe.get_imphash())
#显示DOS_HEADER
dh = pe.DOS_HEADER
#显示NT_HEADERS
nh = pe.NT_HEADERS
#显示FILE_HEADER
fh = pe.FILE_HEADER
#显示OPTIONAL_HEADER
oh = pe.OPTIONAL_HEADER
print(type(fh)) #
print(str(fh))
#----------------------------------第二步 获取UTC时间-------------------------------
#通过正则表达式获取时间
p = re.compile(r'[[](.*?)[]]', re.I|re.S|re.M) #最小匹配
res = re.findall(p, str(fh))
print(res[1]) #第一个值是IMAGE_FILE_HEADER
res_time = res[1].replace(" UTC","")
# Fri Jun 19 10:46:21 2020 UTC
#获取当前时间
t = time.ctime()
print(t,"\n") # Thu Jul 16 20:42:18 2020
utc_time = datetime.datetime.strptime(res_time, '%a %b %d %H:%M:%S %Y')
print("UTC Time:", utc_time)
# 2020-06-19 10:46:21
#----------------------------------第三步 全球时区转换-------------------------------
#http://zh.thetimenow.com/india
#UTC时间比北京时间晚八个小时 故用timedelta方法加上八个小时
china_time = datetime.datetime.strptime(res_time, '%a %b %d %H:%M:%S %Y') + datetime.timedelta(hours=8)
print("China Time:",china_time)
#美国 UTC-5
america_time = datetime.datetime.strptime(res_time, '%a %b %d %H:%M:%S %Y') - datetime.timedelta(hours=5)
print("America Time:",america_time)
#印度 UTC+5
india_time = datetime.datetime.strptime(res_time, '%a %b %d %H:%M:%S %Y') + datetime.timedelta(hours=5)
print("India Time:",india_time)
#澳大利亚 UTC+10
australia_time = datetime.datetime.strptime(res_time, '%a %b %d %H:%M:%S %Y') + datetime.timedelta(hours=10)
print("Australia Time",australia_time)
#俄罗斯 UTC+3
russia_time = datetime.datetime.strptime(res_time, '%a %b %d %H:%M:%S %Y') + datetime.timedelta(hours=3)
print("Russia Time",russia_time)
#英国 UTC+0
england_time = datetime.datetime.strptime(res_time, '%a %b %d %H:%M:%S %Y')
print("England Time",england_time)
#日本 UTC+9
japan_time = datetime.datetime.strptime(res_time, '%a %b %d %H:%M:%S %Y') + datetime.timedelta(hours=9)
print("Japan Time",england_time)
#德国 UTC+1
germany_time = datetime.datetime.strptime(res_time, '%a %b %d %H:%M:%S %Y') + datetime.timedelta(hours=1)
print("Germany Time",germany_time)
#法国 UTC+1
france_time = datetime.datetime.strptime(res_time, '%a %b %d %H:%M:%S %Y') + datetime.timedelta(hours=1)
print("France Time",france_time)
#加拿大 UTC-5
canada_time = datetime.datetime.strptime(res_time, '%a %b %d %H:%M:%S %Y') - datetime.timedelta(hours=5)
print("Canada Time:",canada_time)
#越南 UTC+7
vietnam_time = datetime.datetime.strptime(res_time, '%a %b %d %H:%M:%S %Y') + datetime.timedelta(hours=7)
print("Vietnam Time:",vietnam_time)
输出结果如下图所示,不同地区有对应的时间分布,如果正常作息是早上9点到12点、下午2点到5点,从结果看更像是来自India、England、Japan等地区。当然,只有恶意样本很多的时候,我们才能进行更好的溯源,哈哈~
写到这里,这篇文章就介绍完毕,希望对您有所帮助,最后进行简单的总结下作者的猜想。
本文尝试的是最简单的方法,所以也存在很多问题,比如当有很多恶意样本的时候,我们才能基于多个样本时间戳并结合正常作息时间进行分析,才能判断其来源。如果仅从一个样本进行分析,其准确率还是会有影响,有的恶意软件是深夜发布,也影响了该方法的准确性,同时混淆、加壳、对抗样本也能影响我们的实验效果,但作者仅是提供了一种方法,更深入的研究还在继续,如果您有好的方法也欢迎和我讨论。
最后欢迎大家讨论如何判断PE软件或APP来源哪个国家或地区呢?印度又是如何确保一键正确卸载中国APP呢?哈哈,未知攻,焉知防。加油~
学安全一年,认识了很多安全大佬和朋友,希望大家一起进步。这篇文章中如果存在一些不足,还请海涵。作者作为网络安全初学者的慢慢成长路吧!希望未来能更透彻撰写相关文章。同时非常感谢参考文献中的安全大佬们的文章分享,深知自己很菜,得努力前行。
(By:Eastmount 2020-07-23 星期日 下午5点写于武汉 http://blog.csdn.net/eastmount/ )
参考文献:
[1] [网络安全自学篇] 六十二.PE文件逆向之PE文件解析、PE编辑工具使用和PE结构修改(三)
[2] 白象的舞步——来自南亚次大陆的网络攻击
[3] https://xz.aliyun.com/t/2688
[4] [原创]利用python+pefile库做PE格式文件的快速开发 - jmpjerryy
[5] python 时间类型和相互转换 - shhnwangjian