Ceres的一个主要目的是解决大尺度bundle adjustment 问题。多说无益,直接上代码:
// file bal_problem.h
#ifndef CERES_EXAMPLES_BAL_PROBLEM_H_
#define CERES_EXAMPLES_BAL_PROBLEM_H_
#include
namespace ceres {
namespace examples {
class BALProblem {
public:
explicit BALProblem(const std::string& filename, bool use_quaternions);
~BALProblem();
void WriteToFile(const std::string& filename) const;
void WriteToPLYFile(const std::string& filename) const;
// 将重建的“中心”移到原点,中心是通过计算点的marginal median来确定的。
// 然后对重构进行缩放,以便从原点处得到的点的 median absolute deviation 是100.0
//
// 问题的重投影误差保持不变
void Normalize();
// 用特定标准差的随机正态分布值扰乱相机姿态和几何结构
void Perturb(const double rotation_sigma,
const double translation_sigma,
const double point_sigma);
//相机参数的个数
int camera_block_size() const { return use_quaternions_ ? 10 : 9; }
// 点参数的个数
int point_block_size() const { return 3; }
int num_cameras() const { return num_cameras_; }
int num_points() const { return num_points_; }
int num_observations() const { return num_observations_; }
int num_parameters() const { return num_parameters_; }
const int* point_index() const { return point_index_; }
const int* camera_index() const { return camera_index_; }
const double* observations() const { return observations_; }
const double* parameters() const { return parameters_; }
const double* cameras() const { return parameters_; }
double* mutable_cameras() { return parameters_; }
double* mutable_points() {
return parameters_ + camera_block_size() * num_cameras_;
}
private:
void CameraToAngleAxisAndCenter(const double* camera,
double* angle_axis,
double* center) const;
void AngleAxisAndCenterToCamera(const double* angle_axis,
const double* center,
double* camera) const;
int num_cameras_;
int num_points_;
int num_observations_;
int num_parameters_;
bool use_quaternions_;
int* point_index_;
int* camera_index_;
double* observations_;
// The parameter vector is laid out as follows
// [camera_1, ..., camera_n, point_1, ..., point_m]
double* parameters_;
};
} // namespace examples
} // namespace ceres
#endif // CERES_EXAMPLES_BAL_PROBLEM_H_
// file bundle_adjuster.cc
#include
#include
#include
#include
#include
#include
#include "bal_problem.h"
#include "ceres/ceres.h"
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "snavely_reprojection_error.h"
namespace ceres {
namespace examples {
void SetLinearSolver(Solver::Options* options) {
// 设置LinearSolver,可选项为:"sparse_schur, dense_schur, iterative_schur,
// sparse_normal_cholesky, ""dense_qr, dense_normal_cholesky and cgnr."
CHECK(StringToLinearSolverType(FLAGS_linear_solver,
&options->linear_solver_type));
// 设置PreconditionerType,可选项为:"identity, jacobi,
// schur_jacobi, cluster_jacobi, ""cluster_tridiagonal."
CHECK(StringToPreconditionerType(FLAGS_preconditioner,
&options->preconditioner_type));
// 设置VisibilityClusteringType,可选项为:"single_linkage,
// canonical_views"
CHECK(StringToVisibilityClusteringType(FLAGS_visibility_clustering,
&options->visibility_clustering_type));
// 设置SparseLinearAlgebraLibraryType,可选项为:"suite_sparse,
// cx_sparse"
CHECK(StringToSparseLinearAlgebraLibraryType(
FLAGS_sparse_linear_algebra_library,
&options->sparse_linear_algebra_library_type));
// 设置DenseLinearAlgebraLibraryType,可选项为:"eigen,
// lapack."
CHECK(StringToDenseLinearAlgebraLibraryType(
FLAGS_dense_linear_algebra_library,
&options->dense_linear_algebra_library_type));
// 线程数
options->num_linear_solver_threads = FLAGS_num_threads;
// 是否使用舍尔补
options->use_explicit_schur_complement = FLAGS_explicit_schur_complement;
}
void SetOrdering(BALProblem* bal_problem, Solver::Options* options) {
// 3D点数量
const int num_points = bal_problem->num_points();
// 点的维度(3维)
const int point_block_size = bal_problem->point_block_size();
// 点数据起始地址
double* points = bal_problem->mutable_points();
// 相机姿态数
const int num_cameras = bal_problem->num_cameras();
// 相机参数数(9/10)
const int camera_block_size = bal_problem->camera_block_size();
// 相机参数起始地址
double* cameras = bal_problem->mutable_cameras();
// true(使用内迭代对非线性进行)
// false(细化每个成功的信任区域步骤)
if (options->use_inner_iterations) {
// 可选参数类型automatic, cameras, points,(points,cameras),(cameras,points)
if (FLAGS_blocks_for_inner_iterations == "cameras") {
LOG(INFO) << "Camera blocks for inner iterations";
options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
for (int i = 0; i < num_cameras; ++i) {
// 添加元素到一个组
options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
}
} else if (FLAGS_blocks_for_inner_iterations == "points") {
LOG(INFO) << "Point blocks for inner iterations";
options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
for (int i = 0; i < num_points; ++i) {
options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
}
} else if (FLAGS_blocks_for_inner_iterations == "cameras,points") {
LOG(INFO) << "Camera followed by point blocks for inner iterations";
options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
for (int i = 0; i < num_cameras; ++i) {
options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 0);
}
for (int i = 0; i < num_points; ++i) {
options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 1);
}
} else if (FLAGS_blocks_for_inner_iterations == "points,cameras") {
LOG(INFO) << "Point followed by camera blocks for inner iterations";
options->inner_iteration_ordering.reset(new ParameterBlockOrdering);
for (int i = 0; i < num_cameras; ++i) {
options->inner_iteration_ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
}
for (int i = 0; i < num_points; ++i) {
options->inner_iteration_ordering->AddElementToGroup(points + point_block_size * i, 0);
}
} else if (FLAGS_blocks_for_inner_iterations == "automatic") {
LOG(INFO) << "Choosing automatic blocks for inner iterations";
} else {
LOG(FATAL) << "Unknown block type for inner iterations: "
<< FLAGS_blocks_for_inner_iterations;
}
}
// BA问题有一个稀疏的结构,使它们能够适应更专业、更高效的解决方案策略。斯帕塞舒尔、登斯舒尔和迭代器的解决者利用了这种特殊的结构。
//
// 这可以通过指定Options::orderingtype=ceres::SCHUR,
// 在这种情况下,Ceres将自动确定正确的参数块排序,
// 或者手动指定一个合适的排序向量,定义Options::num_eliminate_blocks。
if (FLAGS_ordering == "automatic") {
return;
}
ceres::ParameterBlockOrdering* ordering =
new ceres::ParameterBlockOrdering;
// The points come before the cameras.
for (int i = 0; i < num_points; ++i) {
ordering->AddElementToGroup(points + point_block_size * i, 0);
}
for (int i = 0; i < num_cameras; ++i) {
// When using axis-angle, there is a single parameter block for
// the entire camera.
ordering->AddElementToGroup(cameras + camera_block_size * i, 1);
}
options->linear_solver_ordering.reset(ordering);
}
void SetMinimizerOptions(Solver::Options* options) {
// 最大迭代次数
options->max_num_iterations = FLAGS_num_iterations;
// 迭代过程是否输出
options->minimizer_progress_to_stdout = true;
// 线程数
options->num_threads = FLAGS_num_threads;
// 每次迭代的精度
options->eta = FLAGS_eta;
// 求解时间
options->max_solver_time_in_seconds = FLAGS_max_solver_time;
// 信任区间算法/nonmonotic
options->use_nonmonotonic_steps = FLAGS_nonmonotonic_steps;
if (FLAGS_line_search) {
options->minimizer_type = ceres::LINE_SEARCH;
}
CHECK(StringToTrustRegionStrategyType(FLAGS_trust_region_strategy,
&options->trust_region_strategy_type));
// 可选项:raditional_dogleg,subspace_dogleg
CHECK(StringToDoglegType(FLAGS_dogleg, &options->dogleg_type));
options->use_inner_iterations = FLAGS_inner_iterations;
}
void SetSolverOptionsFromFlags(BALProblem* bal_problem,
Solver::Options* options) {
SetMinimizerOptions(options);
SetLinearSolver(options);
SetOrdering(bal_problem, options);
}
void BuildProblem(BALProblem* bal_problem, Problem* problem) {
const int point_block_size = bal_problem->point_block_size();
const int camera_block_size = bal_problem->camera_block_size();
double* points = bal_problem->mutable_points();
double* cameras = bal_problem->mutable_cameras();
// Observations是特征的坐标 u v
const double* observations = bal_problem->observations();
for (int i = 0; i < bal_problem->num_observations(); ++i) {
CostFunction* cost_function;
// Each Residual block takes a point and a camera as input and
// outputs a 2 dimensional residual.
// 加入约束 特征位置
cost_function =
(FLAGS_use_quaternions)
? SnavelyReprojectionErrorWithQuaternions::Create(
observations[2 * i + 0],
observations[2 * i + 1])
: SnavelyReprojectionError::Create(
observations[2 * i + 0],
observations[2 * i + 1]);
// If enabled use Huber's loss function.
LossFunction* loss_function = FLAGS_robustify ? new HuberLoss(1.0) : NULL;
// 没一个特征对应这一个相机姿态和一个三维点
// 加入点 和 相机
double* camera =
cameras + camera_block_size * bal_problem->camera_index()[i];
double* point = points + point_block_size * bal_problem->point_index()[i];
problem->AddResidualBlock(cost_function, loss_function, camera, point);
}
if (FLAGS_use_quaternions && FLAGS_use_local_parameterization) {
LocalParameterization* camera_parameterization =
new ProductParameterization(
new QuaternionParameterization(),
new IdentityParameterization(6));
for (int i = 0; i < bal_problem->num_cameras(); ++i) {
// ????
problem->SetParameterization(cameras + camera_block_size * i,
camera_parameterization);
}
}
}
void SolveProblem(const char* filename) {
// 实例化BALProblem 导入文件信息
BALProblem bal_problem(filename, FLAGS_use_quaternions);
if (!FLAGS_initial_ply.empty()) {
bal_problem.WriteToPLYFile(FLAGS_initial_ply);
}
Problem problem;
srand(FLAGS_random_seed);
bal_problem.Normalize();
// 添加噪声
bal_problem.Perturb(FLAGS_rotation_sigma,
FLAGS_translation_sigma,
FLAGS_point_sigma);
// 添加约束
BuildProblem(&bal_problem, &problem);
Solver::Options options;
// 设置优化选项
SetSolverOptionsFromFlags(&bal_problem, &options);
options.gradient_tolerance = 1e-16;
options.function_tolerance = 1e-16;
Solver::Summary summary;
//求解
Solve(options, &problem, &summary);
std::cout << summary.FullReport() << "\n";
if (!FLAGS_final_ply.empty()) {
bal_problem.WriteToPLYFile(FLAGS_final_ply);
}
}
} // namespace examples
}
// main
int main(int argc, char** argv) {
CERES_GFLAGS_NAMESPACE::ParseCommandLineFlags(&argc, &argv, true);
google::InitGoogleLogging(argv[0]);
if (FLAGS_input.empty()) {
LOG(ERROR) << "Usage: bundle_adjuster --input=bal_problem";
return 1;
}
CHECK(FLAGS_use_quaternions || !FLAGS_use_local_parameterization)
<< "--use_local_parameterization can only be used with "
<< "--use_quaternions.";
ceres::examples::SolveProblem(FLAGS_input.c_str());
return 0;
}
// file snavely_reprojection_error.h
#include "ceres/rotation.h"
namespace ceres {
namespace examples {
// 小孔相机模型. camera用9个参数表示, 3 个表示旋转, 3 个表示平移, 1个焦距,2个径向畸变
// 中心点没有建模,假设为图片中心
struct SnavelyReprojectionError {
SnavelyReprojectionError(double observed_x, double observed_y)
: observed_x(observed_x), observed_y(observed_y) {}
template <typename T>
bool operator()(const T* const camera,
const T* const point,
T* residuals) const {
// camera[0,1,2] 是angle-axis 旋转.
T p[3];
AngleAxisRotatePoint(camera, point, p);
// camera[3,4,5] are the translation.
// 点转换到相机坐标系
p[0] += camera[3];
p[1] += camera[4];
p[2] += camera[5];
// Compute the center of distortion. The sign change comes from
// the camera model that Noah Snavely's Bundler assumes, whereby
// the camera coordinate system has a negative z axis.
const T xp = - p[0] / p[2];
const T yp = - p[1] / p[2];
// Apply second and fourth order radial distortion.
const T& l1 = camera[7];
const T& l2 = camera[8];
const T r2 = xp*xp + yp*yp;
const T distortion = T(1.0) + r2 * (l1 + l2 * r2);
// Compute final projected point position.
const T& focal = camera[6];
// 得到3D点投影到图像上的位置
const T predicted_x = focal * distortion * xp;
const T predicted_y = focal * distortion * yp;
// 特征位置与3D点计算位置的差
residuals[0] = predicted_x - T(observed_x);
residuals[1] = predicted_y - T(observed_y);
return true;
}
// Factory to hide the construction of the CostFunction object from
// the client code.
static ceres::CostFunction* Create(const double observed_x,
const double observed_y) {
// 使用AutoDiffCostFunction,2个残差,参数1有9维,参数2有3维
return (new ceres::AutoDiffCostFunction2, 9, 3>(
new SnavelyReprojectionError(observed_x, observed_y)));
}
double observed_x;
double observed_y;
};
// Templated pinhole camera model for used with Ceres. The camera is
// parameterized using 10 parameters. 4 for rotation, 3 for
// translation, 1 for focal length and 2 for radial distortion. The
// principal point is not modeled (i.e. it is assumed be located at
// the image center).
struct SnavelyReprojectionErrorWithQuaternions {
// (u, v): the position of the observation with respect to the image
// center point.
SnavelyReprojectionErrorWithQuaternions(double observed_x, double observed_y)
: observed_x(observed_x), observed_y(observed_y) {}
template <typename T>
bool operator()(const T* const camera,
const T* const point,
T* residuals) const {
// camera[0,1,2,3] is are the rotation of the camera as a quaternion.
//
// We use QuaternionRotatePoint as it does not assume that the
// quaternion is normalized, since one of the ways to run the
// bundle adjuster is to let Ceres optimize all 4 quaternion
// parameters without a local parameterization.
T p[3];
QuaternionRotatePoint(camera, point, p);
p[0] += camera[4];
p[1] += camera[5];
p[2] += camera[6];
// Compute the center of distortion. The sign change comes from
// the camera model that Noah Snavely's Bundler assumes, whereby
// the camera coordinate system has a negative z axis.
const T xp = - p[0] / p[2];
const T yp = - p[1] / p[2];
// Apply second and fourth order radial distortion.
const T& l1 = camera[8];
const T& l2 = camera[9];
const T r2 = xp*xp + yp*yp;
const T distortion = T(1.0) + r2 * (l1 + l2 * r2);
// Compute final projected point position.
const T& focal = camera[7];
const T predicted_x = focal * distortion * xp;
const T predicted_y = focal * distortion * yp;
// The error is the difference between the predicted and observed position.
residuals[0] = predicted_x - T(observed_x);
residuals[1] = predicted_y - T(observed_y);
return true;
}
// Factory to hide the construction of the CostFunction object from
// the client code.
static ceres::CostFunction* Create(const double observed_x,
const double observed_y) {
return (new ceres::AutoDiffCostFunction<
SnavelyReprojectionErrorWithQuaternions, 2, 10, 3>(
new SnavelyReprojectionErrorWithQuaternions(observed_x,
observed_y)));
}
double observed_x;
double observed_y;
};
这个例程比较长,看起来很复杂,但是实际上只是将options的一些选项,列举了出来,具体的使用也没有很好的介绍,本质上并没有什么太难的。options的可设置参数非常之多,具体可以看solver.h文件。