- Python精进系列: K-Means 聚类算法调用库函数和手动实现对比分析
进一步有进一步的欢喜
Python精进系列算法pythonkmeans
一、引言在机器学习领域,聚类分析是一种重要的无监督学习方法,用于将数据集中的样本划分为不同的组或簇,使得同一簇内的样本具有较高的相似性,而不同簇之间的样本具有较大的差异性。K-Means聚类算法是最常用的聚类算法之一,它以其简单性和高效性在数据挖掘、图像分割、模式识别等领域得到了广泛应用。本文将详细介绍K-Means聚类算法,并分别给出调用现成函数和不调用任何现成函数实现K-Means聚类的代码示
- 《数据挖掘导论》 第二章数据
爱吃草莓的西瓜酱
数据挖掘导论数据挖掘
第二章数据数据类型数据质量数据预处理相似度测量数据Collectionofdataobjectsandtheirattributes特征值数值型的或者描述性的(男/女-->0/1)特征和特征值之间的区别:相同的属性可能被赋予不同的特征值,如身高的单位可能是米或者英尺不同的属性可以映射到相同的值集,如ID是无界的,age有最大值和最小值1.特征的类型Nominal(标称)Examples:IDnum
- 数据挖掘技术介绍
柒柒钏
数据挖掘数据挖掘人工智能
数据挖掘技术介绍分类聚类关联规则挖掘预测异常检测特征选择与降维文本挖掘序列模式挖掘深度学习集成学习数据挖掘(DataMining)是一种从大量数据中提取有用信息和模式的技术,旨在从数据中发现隐藏的规律、趋势或关系,从而为决策提供支持。分类定义:是一种监督学习方法,用于将数据分为不同的类别。功能:根据已标记的训练数据,学习一个模型,用于预测新数据的类别。方法:决策树、支持向量机、神经网络、逻辑回归、
- Python爬虫学习笔记_DAY_26_Python爬虫之requests库的安装与基本使用【Python爬虫】_requests库ip
苹果Android开发组
程序员python爬虫学习
最后Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习Python门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的Pytho
- DeepSeek在供热行业中的应用
杨航 AI
人工智能深度学习python机器学习算法
目录引言1.1DeepSeek技术概述1.2供暖行业业务挑战1.3DeepSeek在供暖行业的应用前景DeepSeek技术基础2.1深度学习与机器学习2.2自然语言处理(NLP)2.3图像识别与处理2.4数据挖掘与分析供暖行业应用场景3.1设备监控与维护3.1.1设备状态监控3.1.2故障预测与诊断3.1.3维护计划优化3.2能源管理与优化3.2.1能耗数据分析3.2.2热负荷预测3.2.3节能优
- kaggle竞赛(初识)
薛定谔的码*
人工智能
PART0:Kaggle介绍Kaggle是什么?答案很简单Kaggle是数据挖掘比赛火起来的,以至于中国兴起了很多很多类似的比赛;Kaggle是一个数据科学竞赛的平台,很多公司会发布一些接近真实业务的问题,吸引爱好数据科学的人来一起解决。Kaggle提供了一个介于“完美”与真实之间的过渡,问题的定义基本良好,却夹着或多或少的难点,一般没有完全成熟的解决方案。在参赛过程中与论坛上的其他参赛者互动,能
- 数据挖掘导论Pangaea-Ning Tan 读书笔记——(第一,二,三章)
小黄人的黄
数据挖掘数据挖掘
《数据挖掘导论》Pang-NingTan,MichaelSteinbach,VipinKumar读书笔记,第一章绪论数据挖掘任务预测任务描述任务分类任务回归任务聚类分析关联分析异常检测章节导读数据挖掘数据处理第2章第3章分类第4章决策树过拟合性能评估等第5章
- 数据挖掘|关联分析与Apriori算法详解
皖山文武
数据挖掘商务智能数据挖掘关联分析Apriori算法机器学习
数据挖掘|关联分析与Apriori算法1.关联分析2.关联规则相关概念2.1项目2.2事务2.3项目集2.4频繁项目集2.5支持度2.6置信度2.7提升度2.8强关联规则2.9关联规则的分类3.Apriori算法3.1Apriori算法的Python实现3.2基于mlxtend库的Apriori算法的Python实现1.关联分析关联规则分析(Association-rulesAnalysis)是数
- 关联规则算法:揭秘数据中的隐藏关系,从理论到实战
秋声studio
机器学习算法详解关联规则算法数据挖掘Apriori算法FP-Growth算法大数据优化数据预处理增量式更新
引言在当今数据驱动的时代,如何从海量数据中挖掘出有价值的信息成为了各行各业的核心挑战。关联规则算法作为数据挖掘领域的重要工具,能够帮助我们发现数据中隐藏的关联关系,从而为决策提供支持。无论是电商平台的商品推荐,还是医疗领域的疾病诊断,关联规则算法都展现出了强大的应用潜力。本文将从基础概念出发,逐步深入探讨关联规则算法的核心原理、经典算法及其优化策略。无论你是数据挖掘的初学者,还是希望进一步了解关联
- OLAP与OLTP:数据处理系统的两种核心架构
思静鱼
#Mysql-数据库架构
文章目录OLAP和OLTP的主要区别OLAP常见数据库和OLTP常见数据库OLAP是英文OnlineAnalyticalProcessing的缩写,中文称为联机分析处理。它是一种基于多维数据模型的分析处理技术,用于从不同的角度进行数据挖掘和分析,以帮助用户快速发现数据之间的相关性和趋势。OLAP技术通常涉及到预计算、缓存和查询优化等方面的技术,可用于构建在线分析系统(OLAP系统)。该系统将大量的
- 数据分析在宇宙观测中的重要性
AI天才研究院
计算ChatGPTDeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
数据分析在宇宙观测中的重要性关键词:数据分析、宇宙观测、数据预处理、数据挖掘、数据可视化摘要:本文将探讨数据分析在宇宙观测中的重要性,从数据分析在宇宙观测中的应用背景、重要性、面临的挑战与机遇以及未来发展趋势等方面进行深入分析,旨在为读者提供一个全面而详细的了解。引言第1章:分析数据与宇宙观测的关联1.1.1数据分析在宇宙观测中的应用背景宇宙观测是研究宇宙的结构、演化、性质以及各种物理现象的科学。
- k-Shape:高效准确的聚类方法
优化算法侠Swarm-Opti
信号处理故障诊断聚类机器学习人工智能matlab数据挖掘
引言时间数据在许多学科中的扩散和无处不在,已经对时间序列的分析和挖掘产生了极大的兴趣。聚类是最流行的数据挖掘方法之一,不仅因为它的探索性,而且作为其他技术的预处理步骤或子程序。常用的有-means聚类算法。本文介绍了一种新的时间序列聚类算法k-Shape。k-Shape依赖于一个可扩展的迭代优化过程,它创建同质和良好分离的集群。作为距离度量,k-Shape使用标准化的交叉相关。基于距离度量的性质,
- 信号处理应用:电力系统中的信号处理_(9).基于电力系统信号的数据挖掘技术
kkchenkx
信号处理技术仿真模拟信号处理数据挖掘人工智能
基于电力系统信号的数据挖掘技术1.引言电力系统中的信号处理是一个重要的研究领域,涉及电力系统的监测、故障诊断、状态评估等多个方面。随着大数据和人工智能技术的发展,数据挖掘技术在电力系统中的应用越来越广泛。本节将介绍如何利用数据挖掘技术对电力系统中的信号进行处理和分析,以提高系统的可靠性和效率。2.电力系统中的信号类型在电力系统中,信号可以分为多种类型,包括:电压信号:反映电力系统的电压水平,用于检
- 语义检索-BAAI Embedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性
汀、人工智能
LLM工业级落地实践embeddinglangchain人工智能智能问答RAG检索增强生成大模型
语义检索-BAAIEmbedding语义向量模型深度解析[1-详细版]:预训练至精通、微调至卓越、评估至精准、融合提升模型鲁棒性语义向量模型(EmbeddingModel)已经被广泛应用于搜索、推荐、数据挖掘等重要领域。在大模型时代,它更是用于解决幻觉问题、知识时效问题、超长文本问题等各种大模型本身制约或不足的必要技术。然而,当前中文世界的高质量语义向量模型仍比较稀缺,且很少开源。为加快解决大模型
- 知识图谱与金融——基于知识图谱的风险监控与决策支持
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介知识图谱(KG)是一种用来表示大量互相关联数据的多维网络结构,它通过三元组(subject-predicate-object)的方式来表述实体之间的关系。它经常被用在文本分析、数据挖掘、推荐系统等领域。而随着金融行业对海量信息数据的需求越来越高,知识图谱技术也越来越受到重视。实际上,知识图谱已经成为构建和处理金融知识的重要工具之一。本文将探讨知识图谱在金融中的应
- 数据挖掘实战-基于Catboost算法的艾滋病数据可视化与建模分析
艾派森
数据挖掘实战合集python人工智能数据挖掘信息可视化数据分析
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍
- 【数据仓库与数据挖掘基础】第一章 概论/基础知识
精神病不行计算机不上班
数据仓库与数据挖掘基础数据挖掘数据仓库
知识点复习:事务(关于事务的一些知识点可以点这里)一、数据仓库的一些基本的知识1.从数据库到数据仓库1.1数据库用于事务处理1.1.1定义:事务处理是指对数据库中数据的操作,这些操作通常包括插入、更新、删除和查询等。事务处理的核心是确保数据的一致性和完整性。事务的定义:事务是数据库操作的基本单位,包含一组逻辑上相关的操作。事务要么全部成功,要么全部失败。ACID特性:原子性(Atomicity):
- 特征缩放:统一量纲,提高模型性能
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
特征缩放:统一量纲,提高模型性能1.背景介绍在机器学习和数据挖掘领域,我们经常会遇到不同特征之间量纲差异很大的情况。比如,一个数据集中可能包含年龄(0-100)、收入(0-100000)、身高(150-200cm)等不同尺度的特征。这种量纲不统一会给许多机器学习算法(如梯度下降)带来问题,导致收敛速度慢、模型性能差等。特征缩放(FeatureScaling)就是一种用于解决这个问题的常用数据预处理
- 80| Python可视化篇 —— Matplotlib数据可视化
小刘要努力。
Python教程系列专栏可视化数据分析python
文章目录Matplotlib和数据可视化安装matplotlib绘制折线图绘制散点图绘制正弦曲线绘制直方图使用Pygal绘制矢量图3D图Matplotlib和数据可视化数据的处理、分析和可视化已经成为Python近年来最为重要的应用领域之一,其中数据的可视化指的是将数据呈现为漂亮的统计图表,然后进一步发现数据中包含的规律以及隐藏的信息。数据可视化又跟数据挖掘和大数据分析紧密相关,而这些领域以及当下
- 社会科学市场博弈和价格预测之时间序列挖掘(Datawhale AI 夏令营)
会飞的Anthony
人工智能人工智能
深入理解赛题——探索性数据分析首先,我们先介绍一下什么是EDA:探索性数据分析(ExploratoryDataAnalysis,EDA)是一组数据分析技术,旨在总结其主要特征,通常通过可视化手段来实现。EDA的目标是通过数据的统计摘要和图形展示来发现数据的结构、异常值、模式、趋势、关系以及变量之间的相互作用。为什么进行EDA?在现在的数据挖掘类比赛中,模型和方法选择空间往往很小,同时存在不少自动机
- 企业数据挖掘平台×DeepSeek强强联合,多种应用场景适用
泰迪智能科技01
DeepSeek数据挖掘人工智能
企业数据挖掘建模平台简单易用,可提供代码方便定制,全面培训服务+丰富模型参考+专业建模人员支持服务。在科技飞速发展的今天,人工智能领域的每一次突破都如同投入湖面的巨石,激起层层波澜。DeepSeek作为大模型领域的璀璨新星,以其卓越的技术实力和创新的应用模式,成为了全球瞩目的焦点,也为高校教育、企业发展都带来了前所未有的机遇与变革。当数据挖掘平台×DeepSeek强强联合,又会碰撞出怎样的火花呢?
- 2024年Python最新蓝桥杯 基础练习全解 答案+解析 共17题 python,三年经验Python开发面经总结
2401_84139963
程序员python学习面试
最后Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习Python门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的Pytho
- 【数据挖掘】Pandas之DataFrame
dundunmm
数据挖掘机器学习数据挖掘大数据人工智能pandas机器学习
在Pandas中,DataFrame提供了丰富的数据操作功能,包括查询、编辑、分类和汇总。1.数据查询(Filtering&Querying)1.1按索引或列名查询importpandasaspddata={"ID":[101,102,103,104,105],"Name":["Alice","Bob","Charlie","David","Eva"],"Age":[25,30,35,40,28]
- 学生行为习惯画像可视分析平台
AI智能涌现深度研究
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
学生行为习惯,画像分析,可视化,机器学习,数据挖掘,教育科技1.背景介绍随着教育信息化进程的不断加速,海量教育数据正在被生成和积累。这些数据蕴含着丰富的学生行为信息,例如学习时间、学习内容、学习方式、学习效果等。有效挖掘和分析这些数据,能够帮助教育工作者深入了解学生的学习习惯和行为模式,从而为个性化教学、精准指导和学习效果提升提供重要支撑。然而,传统的教育数据分析方法往往局限于简单的统计描述,难以
- 用python制作简单的小游戏,用python设计一个小游戏
w12130826
pygamepython开发语言人工智能
本篇文章给大家谈谈python编写小游戏详细教程,以及用python制作简单的小游戏,希望对各位有所帮助,不要忘了收藏本站喔。Python为什么能这么火热?Python相对于其他语言来说比较简单,即使是零基础的普通人也能很快的掌握,在其他方面比如,处于灰色界的爬虫,要VIP的视频,小说,歌,没有爬虫解决不了的;数据挖掘及分析,淘宝就是例子,想开个淘宝店,需要获取相关商品信息,这时数据分析就能解决等
- python和java的优缺点-java有哪些python没有的优点?
weixin_37988176
Java和Python都是目前最火的后台语言。Java的使用时间更久,更成熟,Python语言更年轻,更便捷。两者各有各的优势:Python的优势:1.学起来简单,开发效率高,同样的功能用Java开发可能需要写200条代码,但是用Python只需要30~50条;2.在大数据挖掘方面有突出优势,是大数据分析首选的编程语言,Python可以让开发人员轻松表达概念,程序员维护和更新代码库更容易;3.Py
- 基于hive的电信离线用户的行为分析系统
赵谨言
论文经验分享毕业设计
标题:基于hive的电信离线用户的行为分析系统内容:1.摘要随着电信行业的快速发展,用户行为数据呈现出海量、复杂的特点。为了深入了解用户行为模式,提升电信服务质量和精准营销能力,本研究旨在构建基于Hive的电信离线用户行为分析系统。通过收集电信用户的通话记录、上网行为、短信使用等多源数据,利用Hive数据仓库工具进行数据存储和处理,采用数据挖掘和机器学习算法对用户行为进行分析。实验结果表明,该系统
- 从数据中挖掘洞见:初探数据挖掘的艺术与科学
Echo_Wish
大数据数据挖掘人工智能
从数据中挖掘洞见:初探数据挖掘的艺术与科学在当今信息爆炸的时代,我们每天都被海量数据所包围。这些数据不仅记录了我们每天的生活轨迹,还蕴含着无数潜在的模式和洞见。作为大数据领域的自媒体创作者,我笔名Echo_Wish,在这篇文章中,我将带领大家初探数据挖掘的奥秘,揭示如何从数据中寻找隐藏的模式。什么是数据挖掘?数据挖掘(DataMining),顾名思义,就是从大量数据中“挖掘”出有价值的信息和模式。
- 数据分析学习目录
且行且安~
数据分析进阶之路#数据分析目录数据分析
在未来5个月里,将会陪伴大家一起来学习关于数据分析的相关内容,包括从数据思维,数据工具(Excel,Mysql,Hive,Python),数据方法论,数据展示(Tableau,BI),数据挖掘、数据实战项目一整套的内容,同步会将可能用到的以及有用的知识点整理出来。内容会慢慢更新。如下为数据分析的整个目录一、数据分析思维与方法论1.1、从0-1搭建指标体系、用户标签体系1.1.1、指标体系搭建-专项
- 【数据挖掘】异构图与同构图
dundunmm
数据挖掘深度学习数据挖掘知识图谱人工智能
在图论(GraphTheory)中,异构图(HeterogeneousGraph)和同构图(HomogeneousGraph)是两种不同的图结构概念,它们的主要区别在于节点和边的类型是否单一。1.异构图(HeterogeneousGraph)定义:异构图是指节点类型和/或边类型不同的图,通常用于建模具有多种实体和关系的复杂系统。例如,在社交网络、知识图谱、生物网络等领域,数据往往包含多个类别的实体
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,