12.YOLO_v3视频的读取和qtpy的操作
(写在每篇深度学习文章系列的前面,该系列的文章是我2019年做毕设时的步骤总结,是能实现的,不和其他很多博客一样瞎糊弄人浪费时间。写下这些文章一方面为了方便后来者,一方面也为了自己以后的步骤复现等。
另外,如果我给的那些参考帖子看不了了,可以到我的博客下载区那里去下载对应的压缩文件,我把里面所有的链接网页都截了长图,所以不用担心我给的参考帖子链接失效。
其次,如果我给的参考链接侵犯了该链接博主的权益,烦请告知,必当第一时间删掉。由于本人参考帖子较多,如果侵犯了请原谅,我会删掉。也谢谢各位在路上帮助过我的,谢谢了。
还有就是,如果积分太高了,请告诉我怎么把积分降低,我也不太清楚怎么弄,积分会随着下载次数增加逐渐增加。你知道的话怎么降的话可以留言给我。
emm, 最后的最后,如果你觉得这篇博文有用,请点个赞哩,感谢!~~)
(博客下载区:https://download.csdn.net/download/lininggggggg/11224807
或者在下载区搜索名字:12.YOLO_v3视频的读取和qtpy的操作.zip–深度学习文章12)
一、分点总结
https://blog.csdn.net/a88770202/article/details/87108823 视频的读取!!!
def detect_video(yolo, video_path, output_path=""):
import cv2
vid = cv2.VideoCapture(video_path)
if not vid.isOpened():
raise IOError("Couldn't open webcam or video")
video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC))
video_fps = vid.get(cv2.CAP_PROP_FPS)
video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
isOutput = True if output_path != "" else False
if isOutput:
print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
accum_time = 0
curr_fps = 0
fps = "FPS: ??"
prev_time = timer()
while True:
return_value, frame = vid.read()
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))#Opencv转PIL
image = yolo.detect_image(image)
result = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)#显示的时候再PIL转回Opencv
#
curr_time = timer()
exec_time = curr_time - prev_time
prev_time = curr_time
accum_time = accum_time + exec_time
curr_fps = curr_fps + 1
#
if accum_time > 1:
accum_time = accum_time - 1
fps = "FPS: " + str(curr_fps)
curr_fps = 0
cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.50, color=(255, 0, 0), thickness=2)
cv2.namedWindow("result", cv2.WINDOW_NORMAL)
cv2.imshow("result", result)
# if isOutput:
# out.write(result)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
yolo.close_session()
https://blog.csdn.net/Lay_ZRS/article/details/88549644
https://blog.csdn.net/DumpDoctorWang/article/details/80515861
# -*- coding: utf-8 -*-
"""
Class definition of YOLO_v3 style detection model on image and video
"""
import colorsys
import os
from timeit import default_timer as timer
import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.layers import Input
from PIL import Image, ImageFont, ImageDraw
from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from yolo3.utils import letterbox_image
import os
from keras.utils import multi_gpu_model
class YOLO(object):
_defaults = {
"model_path": 'model_data/yolo.h5',
"anchors_path": 'model_data/yolo_anchors.txt',
"classes_path": 'model_data/coco_classes.txt',
"score" : 0.3,
"iou" : 0.45,
"model_image_size" : (416, 416),
"gpu_num" : 1,
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
def __init__(self, **kwargs):
self.__dict__.update(self._defaults) # set up default values
self.__dict__.update(kwargs) # and update with user overrides
self.class_names = self._get_class()
self.anchors = self._get_anchors()
self.sess = K.get_session()
self.boxes, self.scores, self.classes = self.generate()
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = num_anchors==6 # default setting
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.seed(10101) # Fixed seed for consistent colors across runs.
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
np.random.seed(None) # Reset seed to default.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2, ))
if self.gpu_num>=2:
self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou)
return boxes, scores, classes
def detect_image(self, image):
start = timer()
if self.model_image_size != (None, None):
assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
else:
new_image_size = (image.width - (image.width % 32),
image.height - (image.height % 32))
boxed_image = letterbox_image(image, new_image_size)
image_data = np.array(boxed_image, dtype='float32')
print(image_data.shape)
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = (image.size[0] + image.size[1]) // 300
for i, c in reversed(list(enumerate(out_classes))):
predicted_class = self.class_names[c]
box = out_boxes[i]
score = out_scores[i]
top, left, bottom, right = box
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
label = '{} {:.2f} '.format(predicted_class, score) + '({} {}) '.format(np.floor((top+bottom)/2+0.5).astype('int32'), np.floor((left+right)/2+0.5).astype('int32'))
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
print(label, (left, top), (right, bottom))
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
# My kingdom for a good redistributable image drawing library.
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[c])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[c])
draw.text(text_origin, label, fill=(0, 0, 0), font=font)
del draw
end = timer()
print(end - start)
return image
def close_session(self):
self.sess.close()
# def detect_video(yolo, video, output_path=""):
# import cv2
# video_path = os.path.join(video)
#
# if (os.path.exists(video_path) and video != ''):
# vid = cv2.VideoCapture(video_path)
# else:
# vid = cv2.VideoCapture(0)
# video = 'your_camera.mp4'
#
# if not vid.isOpened():
# raise IOError("Couldn't open webcam or video")
# video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC))
# video_fps = vid.get(cv2.CAP_PROP_FPS)
# video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
# int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
# isOutput = True if output_path != "" else False
# if isOutput:
# print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
# out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
# accum_time = 0
# curr_fps = 0
# fps = "FPS: ??"
# prev_time = timer()
# while True:
# return_value, frame = vid.read()
# image = Image.fromarray(frame)
# image = yolo.detect_image(image)
# result = np.asarray(image)
# curr_time = timer()
# exec_time = curr_time - prev_time
# prev_time = curr_time
# accum_time = accum_time + exec_time
# curr_fps = curr_fps + 1
# if accum_time > 1:
# accum_time = accum_time - 1
# fps = "FPS: " + str(curr_fps)
# curr_fps = 0
# cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
# fontScale=0.50, color=(255, 0, 0), thickness=2)
# cv2.namedWindow("result", cv2.WINDOW_NORMAL)
# cv2.imshow("result", result)
# if isOutput:
# out.write(result)
# if cv2.waitKey(1) & 0xFF == ord('q'):
# break
# yolo.close_session()
# 添加的
def detect_video(yolo, video, output_path=""):
import cv2
video_path = os.path.join(video)
if (os.path.exists(video_path) and video != ''):
vid = cv2.VideoCapture(video_path)
else:
vid = cv2.VideoCapture(0)
video = 'your_camera.mp4'
if not vid.isOpened():
raise IOError("Couldn't open webcam or video")
video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC))
video_fps = vid.get(cv2.CAP_PROP_FPS)
video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
isOutput = True if output_path != "" else False
if isOutput:
print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
accum_time = 0
curr_fps = 0
fps = "FPS: ??"
prev_time = timer()
while True:
return_value, frame = vid.read()
if frame is None:
break
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))#Opencv转PIL
image = yolo.detect_image(image)
result = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)#显示的时候再PIL转回Opencv
#
curr_time = timer()
exec_time = curr_time - prev_time
prev_time = curr_time
accum_time = accum_time + exec_time
curr_fps = curr_fps + 1
#
if accum_time > 1:
accum_time = accum_time - 1
fps = "FPS: " + str(curr_fps)
curr_fps = 0
cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.50, color=(255, 0, 0), thickness=2)
cv2.namedWindow("result", cv2.WINDOW_NORMAL)
cv2.imshow("result", result)
if isOutput:
out.write(result)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
yolo.close_session()
def detect_img(yolo, img_path='test.png'):
image = Image.open(img_path)
import time
t1 = time.time()
####
outdir="E:\GraduationProject\Data\keras-yolo3-master5\photo/store"
r_image = yolo.detect_image(image)
r_image.save(os.path.join(outdir, os.path.basename(img_path)))
####
print('time: {}'.format(time.time() - t1))
r_image.show()
yolo.close_session()
if __name__ == '__main__':
# # 检测单张图片
# detect_img(YOLO(), img_path='.\photo/00002.jpg') # 检测输入图片的路径
# 检测视频
video = '.\photo/ee.mp4'
detect_video(YOLO(), video, output_path="ee_result4.mp4")
# # 检测摄像头
# video = ''
# detect_video(YOLO(), video, output_path="")
# i = 0
# # 检测单张图片
# path = 'E:\GraduationProject\Data\keras-yolo3-master5\pic/'
# if i<=11:
# i += 1
# image_names = os.path.join(path, i, '.jpg')
# detect_img(YOLO(), img_path='image_names') # 检测输入图片的路径
#
# if __name__ == '__main__':
# # file = 'model_data/coco_classes.txt'
# # # detect images in test floder.
# # # 下面是测试图片用的
# # for (root, dirs, files) in os.walk('./test'):
# # if files:
# # for f in files:
# # print(f)
# # path = os.path.join(root, f)
# # image = Image.open(path)
# # image = detect_img(YOLO(), path)
# # cv2.imwrite('pic/' + f, image)
# # Test on some demo image and visualize output.
# path = './test/'
# image_names = sorted(os.listdir(path)) # 获取测试文件夹所有图片
# i = 0
# for it in image_names:
#
# image = Image.open(image_names)
# i+=1
# if i>15: break # 测试9张图片,数字9可以改变
# image = detect_img(YOLO(), image_names)