数据库系统原理(CS-Notes)

目录

1  事务

1.1  概念

1.2  ACID

1. 原子性(Atomicity)

2. 一致性(Consistency)

3. 隔离性(Isolation)

4. 持久性(Durability)

1.3  AUTOCOMMIT

2  并发一致性问题

2.1  丢失修改

2.2  读脏数据

2.3  不可重复读

2.4  幻影读

3  封锁

3.1  封锁粒度

3.2  封锁类型

1. 读写锁

2. 意向锁

3.3  封锁协议

1. 三级封锁协议

2. 两段锁协议

3.4  MySQL 隐式与显示锁定

4  隔离级别

未提交读(READ UNCOMMITTED)

提交读(READ COMMITTED)

可重复读(REPEATABLE READ)

可串行化(SERIALIZABLE)

不可重复读与幻读的区别:

5  多版本并发控制

5.1  版本号

5.2  隐藏的列

5.3  Undo 日志

5.4  实现过程

1. SELECT

2. INSERT

3. DELETE

4. UPDATE

5.5  快照读与当前读

1. 快照读

2. 当前读

6  Next-Key Locks

6.1  Record Locks

6.2  Gap Locks

Next-Key Locks

7  关系数据库设计理论

7.1  函数依赖

7.2  异常

7.3  范式

1. 第一范式 (1NF)

2. 第二范式 (2NF)

3. 第三范式 (3NF)

八、ER 图

实体的三种联系

表示出现多次的关系

联系的多向性

表示子类

参考资料


1  事务

1.1  概念

事务指的是满足 ACID 特性的一组操作,可以通过 Commit 提交一个事务,也可以使用 Rollback 进行回滚。

数据库系统原理(CS-Notes)_第1张图片

1.2  ACID

1. 原子性(Atomicity)

事务被视为不可分割的最小单元,事务的所有操作要么全部提交成功,要么全部失败回滚

回滚可以用回滚日志来实现,回滚日志记录着事务所执行的修改操作,在回滚时反向执行这些修改操作即可。

2. 一致性(Consistency)

数据库在事务执行前后都保持一致性状态。在一致性状态下,所有事务对一个数据的读取结果都是相同的。(应用系统从一个正确的状态另一个正确的状态。而ACID就是说事务能够通过AID来保证这个C的过程。C是目的,AID都是手段)

3. 隔离性(Isolation)

一个事务所做的修改在最终提交以前,对其它事务是不可见的

4. 持久性(Durability)

一旦事务提交,则其所做的修改将会永远保存到数据库中。即使系统发生崩溃,事务执行的结果也不能丢失

使用重做日志来保证持久性。

ACID里的AID都是数据库的特征,也就是依赖数据库的具体实现。而唯独这个C,实际上它依赖于应用层,也就是依赖于开发者。这里的一致性是指 系统从一个正确的状态,迁移到另一个正确的状态

什么叫正确的状态呢?  就是当前的状态 满足预定的约束 就叫做正确的状态、而事务具备ACID里C的特性是说,通过事务的AID 来保证我们的一致性.


事务的 ACID 特性概念简单,但不是很好理解,主要是因为这几个特性不是一种平级关系:

  • 只有满足一致性,事务的执行结果才是正确的。
  • 在无并发的情况下,事务串行执行,隔离性一定能够满足。此时只要能满足原子性,就一定能满足一致性。
  • 在并发的情况下,多个事务并行执行,事务不仅要满足原子性,还需要满足隔离性,才能满足一致性。
  • 事务满足持久化是为了能应对数据库崩溃的情况。

数据库系统原理(CS-Notes)_第2张图片

 

1.3  AUTOCOMMIT

MySQL 默认采用自动提交模式。也就是说,如果不显式使用START TRANSACTION语句来开始一个事务,那么每个查询都会被当做一个事务自动提交。

 

2  并发一致性问题

在并发环境下,事务的隔离性很难保证,因此会出现很多并发一致性问题。

2.1  丢失修改

T1 和 T2 两个事务都对一个数据进行修改,T1 先修改,T2 随后修改,T2 的修改覆盖了 T1 的修改

数据库系统原理(CS-Notes)_第3张图片

2.2  读脏数据

T1 修改一个数据,T2 随后读取这个数据。如果 T1 撤销了这次修改,那么 T2 读取的数据是脏数据

数据库系统原理(CS-Notes)_第4张图片

2.3  不可重复读

T2 读取一个数据,T1 对该数据做了修改。如果 T2 再次读取这个数据,此时读取的结果和第一次读取的结果不同

数据库系统原理(CS-Notes)_第5张图片

2.4  幻影读

T1 读取某个范围的数据,T2 在这个范围内插入新的数据T1 再次读取这个范围的数据,此时读取的结果和第一次读取的结果不同。

数据库系统原理(CS-Notes)_第6张图片

产生并发不一致性问题主要原因是破坏了事务的隔离性,解决方法是通过并发控制来保证隔离性。并发控制可以通过封锁来实现,但是封锁操作需要用户自己控制,相当复杂。数据库管理系统提供了事务的隔离级别,让用户以一种更轻松的方式处理并发一致性问题。


 

3  封锁

3.1  封锁粒度

MySQL 中提供了两种封锁粒度:行级锁以及表级锁

应该尽量只锁定需要修改的那部分数据,而不是所有的资源。锁定的数据量越少,发生锁争用的可能性就越小,系统的并发程度就越高。

但是加锁需要消耗资源,锁的各种操作(包括获取锁释放锁、以及检查锁状态)都会增加系统开销。因此封锁粒度越小,系统开销就越大

在选择封锁粒度时,需要在锁开销并发程度之间做一个权衡。


 

 

3.2  封锁类型

1. 读写锁

  • 排它锁(Exclusive),简写为 X 锁,又称写锁
  • 共享锁(Shared),简写为 S 锁,又称读锁

有以下两个规定:

  • 一个事务对数据对象 A 加了 X 锁,就可以对 A 进行读取更新加锁期间 其它事务不能对 A 加任何锁
  • 一个事务对数据对象 A 加了 S 锁,可以对 A 进行读取操作,但是不能进行更新操作。加锁期间其它事务能对 A 加 S 锁,但是 不能加 X 锁

锁的兼容关系如下:

锁的兼容关系 X S
X锁 × ×
S锁 ×

 

 

 

 

 

2. 意向锁

使用意向锁Intention Locks可以更容易地支持多粒度封锁

在存在行级锁表级锁的情况下,事务 T  想要对表 A X 锁,就需要 先检测是否有其它事务表 A 或者表 A 中的任意一行加了锁,那么就需要对表 A 的每一行 都检测一次,这是非常耗时的。

 

意向锁在原来的 X/S 锁之上引入了 IX/IS

IX IS 都是表锁,用来表示 一个事务想要表中的某个数据行X 锁 S 锁

有以下两个规定:

  • 一个事务 在获得某个数据行对象的 S 锁之前必须先获得表的 IS 锁或者更强的锁
  • 一个事务 在获得某个数据行对象的 X 锁之前必须先获得表的 IX 锁

通过引入意向锁事务 T 想要对表 A X 锁只需要先检测 是否有其它事务表 A 加了 / IX / S / IS 锁。如果有其他事物加了锁,就表示有其它事务正在使用这个表或者表中某一行的锁,因此事务 T 加 X 锁失败。

 

各种锁的兼容关系如下:

各种锁的兼容关系 X IX S IS
X × × × ×
IX × ×
S × ×
IS ×

 

 

 

 

 

 

解释如下:

  • 任意 IS/IX 锁之间都是兼容的,因为它们只是表示想要对表加锁,而不是真正加锁
  • S 锁 只与 S 锁IS 锁兼容,也就是说事务 T 想要对数据行加 S 锁,其它事务可以已经获得对表或者表中的行的 S 锁

 

3.3  封锁协议

1. 三级封锁协议

一级封锁协议

事务 T  要修改数据 A 时 必须加 X 锁直到 T 结束 才释放锁。

可以解决丢失修改问题,因为 不能同时有两个事务  对同一个数据进行修改,那么事务的修改就不会被覆盖。

事务T1 事务T2
lock-x(A)  
read A=20  
  lock-x(A)
  wait
write A=19 .
commit .
unlock-x(A) .
  obtain
  read A=19
  write A=21
  commit
  unlock-x(A)

 

二级封锁协议

在一级的基础上,要求读取数据 A 时必须加 S 锁,读取完马上释放 S 锁

可以解决读脏数据问题,因为如果一个事务1在对数据 A 进行修改,根据 1 级封锁协议,会加 X 锁,那么事务2就不能再加 S 锁了,也就是不会读入数据。

事务T1 事务T2
lock-x(A)  
read A=20  
write A=19  
  lock-s(A)
  wait   //事务2 等待 事务1的x锁的释放
rollback .
A=20 .
unlock-x(A) .
  obtain   //事务2成功加上s锁
  read A=20
  unlock-s(A)   //读取完,马上释放了s锁
  commit

 

三级封锁协议

在二级的基础上,要求读取数据 A 时 必须加 S 锁直到事务结束了才能释放 S 锁。

可以解决不可重复读的问题,因为读 A 时,其它事务不能对 A 加 X 锁,从而避免了在 读的期间 数据发生改变。

事务T1 事务T2
lock-s(A)  
read A=20  
  lock-x(A)
  wait
read A=20 .
commit .
unlock-s(A)   //直到事务结束了,才释放s锁 .
  obtain
  read A=20
  write A=19
  commit
  unlock-X(A)

 

2. 两段锁协议

加锁解锁分为两个阶段进行。

可串行化调度是指,通过并发控制,使得并发执行的事务结果某个串行执行的事务结果相同。

事务遵循两段锁协议 是保证可串行化调度的充分条件。例如以下操作满足两段锁协议,它是可串行化调度。

lock-x(A)...lock-s(B)...lock-s(C)...unlock(A)...unlock(C)...unlock(B)

但不是必要条件,例如以下操作不满足两段锁协议,但是它还是可串行化调度。

lock-x(A)...unlock(A)...lock-s(B)...unlock(B)...lock-s(C)...unlock(C)

 

3.4  MySQL 隐式与显示锁定

MySQL 的 InnoDB 存储引擎 采用两段锁协议,会根据隔离级别 在需要的时候自动加锁,并且所有的锁 都是在同一时刻 被释放,这被称为隐式锁定

InnoDB 也可以使用特定的语句进行显示锁定

SELECT ... LOCK In SHARE MODE;
SELECT ... FOR UPDATE;


 

4  隔离级别

未提交读(READ UNCOMMITTED)

事务中的修改,即使没有提交,对其它事务 也是可见的。

 

提交读(READ COMMITTED)

一个事务只能读取已经提交的事务所做的修改。换句话说,一个事务所做的修改 在提交之前 对其它事务是不可见的

 

可重复读(REPEATABLE READ)

保证 在同一个事务中 多次读取同样数据的结果是一样的。

 

可串行化(SERIALIZABLE)

强制 事务 串行执行

需要加锁实现,而其它隔离级别通常不需要。

 

隔离级别 \ 问题 脏读 不可重复读 幻影读
未提交读
提交读 ×
可重复读 × ×
可串行化 × × ×

 

不可重复读与幻读的区别:

  1. 不可重复读的重点是修改:同样的条件, 你读取过的数据, 再次读取出来发现值不一样了 
  2. 幻读的重点在于新增或者删除:同样的条件, 第1次和第2次读出来的记录数不一样 
  3. 从总的结果来看, 似乎不可重复读和幻读都表现为两次读取的结果不一致。但如果你从控制的角度来看, 两者的区别就比较大。 对于前者, 只需要锁住满足条件的记录。 对于后者, 要锁住满足条件及其相近的记录

 

5  多版本并发控制

多版本并发控制(Multi-Version Concurrency Control, MVCC)是 MySQL 的 InnoDB 存储引擎实现隔离级别的一种具体方式,用于实现提交读可重复读这两种隔离级别。

未提交读隔离级别总是读取最新的数据行,无需使用 MVCC。

可串行化隔离级别需要对 所有读取的行 都加锁,单纯使用 MVCC 无法实现。

 

5.1  版本号

  • 系统版本号:是一个递增的数字,每开始一个新的事务系统版本号就会自动递增
  • 事务版本号:事务开始时的系统版本号。

5.2  隐藏的列

MVCC 在每行记录后面都保存着两个隐藏的列,用来存储两个版本号

  • 创建版本号:指示创建一个数据行的快照时的系统版本号;
  • 删除版本号:如果该快照的删除版本号 大于 当前事务版本号 表示 该快照有效;否则表示 该快照已经被删除了(该快照的删除版本号 小于 当前事务版本号)。

5.3  Undo 日志

MVCC 使用到的快照 存储在 Undo 日志中,该日志 通过回滚指针一个数据行(Record)的所有快照连接起来。

数据库系统原理(CS-Notes)_第7张图片

5.4  实现过程

以下实现过程针对可重复读隔离级别

开始一个事务时,该事务的版本号肯定大于当前所有数据行快照的创建版本号,理解这一点很关键。数据行快照的创建版本号创建数据行快照时的系统版本号。系统版本号随着创建事务而递增,因此新创建一个事务时,这个事务的系统版本号之前的系统版本号都大,也就是比所有数据行快照的创建版本号都大。

1. SELECT

多个事务必须读取到同一个数据行的快照,并且这个快照是距离现在最近的一个有效快照。但是也有例外,如果有一个事务正在修改该数据行,那么它可以读取事务本身所做的修改,而不用和其它事务的读取结果一致。

没有对一个数据行做修改的事务称为 T,T 所要读取的数据行快照的创建版本号必须小于等于 T 的版本号,因为如果大于 T 的版本号,那么表示该数据行快照是其它事务的最新修改,因此不能去读取它

除此之外,T 所要读取的数据行快照的删除版本号必须是未定义或者大于 T 的版本号,因为如果小于等于 T 的版本号,那么表示该数据行快照是已经被删除的,不应该去读取它

 

2. INSERT

当前系统版本号作为数据行快照的创建版本号

3. DELETE

当前系统版本号作为数据行快照的删除版本号

4. UPDATE

当前系统版本号作为更新前的数据行快照的删除版本号,并将当前系统版本号作为更新后的数据行快照的创建版本号。可以理解为先执行 DELETE 后执行 INSERT。

 

5.5  快照读与当前读

1. 快照读

使用 MVCC 读取的是快照中的数据,这样可以减少加锁所带来的开销

select * from table ...;

2. 当前读

读取的是最新的数据,需要加锁。以下第一个语句需要加 S 锁,其它都需要加 X 锁。

select * from table where ? lock in share mode;
select * from table where ? for update;
insert;
update;
delete;

 

6  Next-Key Locks

Next-Key Locks 是 MySQL 的 InnoDB 存储引擎的一种锁实现

MVCC 不能解决 幻影读问题,Next-Key Locks 就是为了解决这个问题而存在的。在可重复读(REPEATABLE READ)隔离级别下,使用 MVCC + Next-Key Locks 可以解决幻读问题。

 

6.1  Record Locks

锁定 一个记录上的索引,而不是记录本身

如果表没有设置索引,InnoDB 会自动在主键上创建隐藏的聚簇索引,因此 Record Locks 依然可以使用。

 

6.2  Gap Locks

锁定索引之间的间隙,但是不包含索引本身。例如当一个事务执行以下语句,其它事务就不能在 t.c 中插入 15

SELECT c FROM t WHERE c BETWEEN 10 and 20 FOR UPDATE;

 

Next-Key Locks

它是 Record Locks 和 Gap Locks 的结合,不仅锁定一个记录上的索引,也锁定索引之间的间隙。例如一个索引包含以下值:10, 11, 13, and 20,那么就需要锁定以下区间

(-∞, 10]
(10, 11]
(11, 13]
(13, 20]
(20, +∞)

 

7  关系数据库设计理论

7.1  函数依赖

记 A->B 表示 A 函数决定 B,也可以说 B 函数依赖于 A。

如果 {A1,A2,... ,An} 是关系的一个或多个属性的集合,该集合函数决定了关系的其它所有属性并且是最小的,那么该集合就称为键码。

对于 A->B,如果能找到 A 的真子集 A',使得 A'-> B,那么 A->B 就是部分函数依赖,否则就是完全函数依赖。

对于 A->B,B->C,则 A->C 是一个传递函数依赖。

 

7.2  异常

以下的学生课程关系的函数依赖为 {Sno, Cname} -> {Sname, Sdept, Mname, Grade},键码为 {Sno, Cname}。也就是说,确定学生和课程之后,就能确定其它信息。

Sno Sname Sdept Mname Cname Grade
1 学生-1 学院-1 院长-1 课程-1 90
2 学生-2 学院-2 院长-2 课程-2 80
2 学生-2 学院-2 院长-2 课程-1 100
3 学生-3 学院-2 院长-2 课程-2 95

不符合范式的关系,会产生很多异常,主要有以下四种异常:

  • 冗余数据:例如 学生-2 出现了两次。
  • 修改异常:修改了一个记录中的信息,但是另一个记录中相同的信息却没有被修改。
  • 删除异常:删除一个信息,那么也会丢失其它信息。例如删除了 课程-1 需要删除第一行和第三行,那么 学生-1 的信息就会丢失。
  • 插入异常:例如想要插入一个学生的信息,如果这个学生还没选课,那么就无法插入。

 

7.3  范式

范式理论是为了解决以上提到四种异常。

高级别范式的 依赖于 低级别的范式,1NF 是 最低级别的范式。

1. 第一范式 (1NF)

属性不可分。(每一列都是原子的)

2. 第二范式 (2NF)

每个非主属性 完全函数依赖于 键码

可以通过分解来满足。

 

分解前 ;

Sno Sname Sdept Mname Cname Grade
1 学生-1 学院-1 院长-1 课程-1 90
2 学生-2 学院-2 院长-2 课程-2 80
2 学生-2 学院-2 院长-2 课程-1 100
3 学生-3 学院-2 院长-2 课程-2 95

以上学生课程关系中,{Sno, Cname} 为键码,有如下函数依赖:

  • Sno -> Sname, Sdept
  • Sdept -> Mname
  • Sno, Cname-> Grade

Grade 完全函数依赖于键码,它没有任何冗余数据,每个学生的每门课都有特定的成绩。

Sname, SdeptMname 部分依赖于键码,当一个学生选修了多门课时,这些数据就会出现多次,造成大量冗余数据

 

分解后 :

关系-1

Sno Sname Sdept Mname
1 学生-1 学院-1 院长-1
2 学生-2 学院-2 院长-2
3 学生-3 学院-2 院长-2

有以下函数依赖:

  • Sno -> Sname, Sdept
  • Sdept -> Mname

关系-2

Sno Cname Grade
1 课程-1 90
2 课程-2 80
2 课程-1 100
3 课程-2 95

有以下函数依赖:

  • Sno, Cname -> Grade

 

3. 第三范式 (3NF)

非主属性 不传递函数依赖于 键码

上面的 关系-1 中存在以下传递函数依赖

  • Sno -> Sdept -> Mname

可以进行以下分解:

关系-11

Sno Sname Sdept
1 学生-1 学院-1
2 学生-2 学院-2
3 学生-3 学院-2

关系-12

Sdept Mname
学院-1 院长-1
学院-2 院长-2

 

八、ER 图

Entity-Relationship,有三个组成部分:实体属性联系

用来进行关系型数据库系统的概念设计。

实体的三种联系

包含一对一,一对多,多对多三种。

  • 如果 A 到 B 是一对多关系,那么画个带箭头的线段指向 B;
  • 如果是一对一,画两个带箭头的线段;
  • 如果是多对多,画两个不带箭头的线段。

下图的 Course 和 Student 是一对多的关系。

数据库系统原理(CS-Notes)_第8张图片

 

表示出现多次的关系

一个实体在联系出现几次,就要用几条线连接。

下图表示一个课程的先修关系,先修关系出现两个 Course 实体,第一个是先修课程,后一个是后修课程,因此需要用两条线来表示这种关系。

数据库系统原理(CS-Notes)_第9张图片

 

联系的多向性

虽然老师可以开设多门课,并且可以教授多名学生,但是对于特定的学生和课程,只有一个老师教授,这就构成了一个三元联系。

数据库系统原理(CS-Notes)_第10张图片

 

表示子类

用一个三角形两条线来连接子类与子类有关的属性和联系都连到子类上,而与父类和子类都有关的连到父类上。

数据库系统原理(CS-Notes)_第11张图片


 

参考资料

  • AbrahamSilberschatz, HenryF.Korth, S.Sudarshan, 等. 数据库系统概念 [M]. 机械工业出版社, 2006.
  • 施瓦茨. 高性能 MYSQL(第3版)[M]. 电子工业出版社, 2013.
  • 史嘉权. 数据库系统概论[M]. 清华大学出版社有限公司, 2006.
  • The InnoDB Storage Engine
  • Transaction isolation levels
  • Concurrency Control
  • The Nightmare of Locking, Blocking and Isolation Levels!
  • Database Normalization and Normal Forms with an Example
  • The basics of the InnoDB undo logging and history system
  • MySQL locking for the busy web developer
  • 浅入浅出 MySQL 和 InnoDB
  • Innodb 中的事务隔离级别和锁的关系

 

你可能感兴趣的:(数据库(CyC2018))