void __init init_timers(void)
{
//初始化本 CPU 上的软件时钟相关的数据结构
int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
(void *)(long)smp_processor_id()); //因为是初始化阶段,所以得到的CPU为启动CPU
init_timer_stats();
BUG_ON(err != NOTIFY_OK);
//向 cpu_chain 通知链注册元素 timers_nb ,该元素的回调函数用于初始化指定 CPU 上的软件时钟相关的数据结构
register_cpu_notifier(&timers_nb);
//初始化时钟的软中断处理函数
open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
}
这个函数完成的主要作用包括:
(1)初始化本 CPU 上的软件时钟相关的数据结构;
(2)向 cpu_chain 通知链注册元素 timers_nb ,该元素的回调函数用于初始化指定 CPU 上的软件时钟相关的数据结构;
(3)初始化时钟的软中断处理函数。
对于操作(1):
static int __cpuinit timer_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
long cpu = (long)hcpu;
int err;
switch(action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
err = init_timers_cpu(cpu); //调用该函数,参数CPU即为启动CPU(或者主CPU)
if (err < 0)
return notifier_from_errno(err);
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_DEAD:
case CPU_DEAD_FROZEN:
migrate_timers(cpu);
break;
#endif
default:
break;
}
return NOTIFY_OK;
}
调用init_timers_cpu:
static int __cpuinit init_timers_cpu(int cpu)
{
int j;
struct tvec_base *base;
static char __cpuinitdata tvec_base_done[NR_CPUS];
if (!tvec_base_done[cpu]) { //启动CPU尚未进行tvec的设置
static char boot_done;
if (boot_done) {
/*
* The APs use this path later in boot
*/
base = kmalloc_node(sizeof(*base),
GFP_KERNEL | __GFP_ZERO,
cpu_to_node(cpu));
if (!base)
return -ENOMEM;
/* Make sure that tvec_base is 2 byte aligned */
if (tbase_get_deferrable(base)) {
WARN_ON(1);
kfree(base);
return -ENOMEM;
}
per_cpu(tvec_bases, cpu) = base;
} else { //第一次进行设置
/*
* This is for the boot CPU - we use compile-time
* static initialisation because per-cpu memory isn't
* ready yet and because the memory allocators are not
* initialised either.
*/
boot_done = 1;
base = &boot_tvec_bases;
}
tvec_base_done[cpu] = 1;
} else {
base = per_cpu(tvec_bases, cpu);
}
spin_lock_init(&base->lock);
//开始初始化5个定时器表
for (j = 0; j < TVN_SIZE; j++) {
INIT_LIST_HEAD(base->tv5.vec + j);
INIT_LIST_HEAD(base->tv4.vec + j);
INIT_LIST_HEAD(base->tv3.vec + j);
INIT_LIST_HEAD(base->tv2.vec + j);
}
for (j = 0; j < TVR_SIZE; j++)
INIT_LIST_HEAD(base->tv1.vec + j);
//默认值为初始化时的jiffes
base->timer_jiffies = jiffies; //当前正在处理的软件时钟到期时间
base->next_timer = base->timer_jiffies;
return 0;
}
对于操作(3),open_softirq(TIMER_SOFTIRQ, run_timer_softirq):
void open_softirq(int nr, void (*action)(struct softirq_action *))
{
softirq_vec[nr].action = action;
}
我们看到,定时器软中断所对应的action是run_timer_softirq,也就是当时钟中断到来,软中断启动时,就会调用这个函数,我们来看一下这个函数:
/*
* This function runs timers and the timer-tq in bottom half context.
*/
static void run_timer_softirq(struct softirq_action *h)
{
struct tvec_base *base = __this_cpu_read(tvec_bases);
hrtimer_run_pending();
//判断当前的jiffies是否大于等于最小的那个超时jiffies.是的话就进入定时器处理
if (time_after_eq(jiffies, base->timer_jiffies))
__run_timers(base);
}
/**
* __run_timers - run all expired timers (if any) on this CPU.
* @base: the timer vector to be processed.
*
* This function cascades all vectors and executes all expired timer
* vectors.
*/
static inline void __run_timers(struct tvec_base *base)
{
struct timer_list *timer;
spin_lock_irq(&base->lock);
while (time_after_eq(jiffies, base->timer_jiffies)) { //处理所有从时间点timer_jiffies 到 时间点jiffies的事件。
struct list_head work_list;
struct list_head *head = &work_list;
int index = base->timer_jiffies & TVR_MASK; //计算第一组的索引位置
/*
* Cascade timers:
*/
if (!index &&
(!cascade(base, &base->tv2, INDEX(0))) && //cascade用于从指定组取得定时器补充前一组。
(!cascade(base, &base->tv3, INDEX(1))) &&
!cascade(base, &base->tv4, INDEX(2)))
cascade(base, &base->tv5, INDEX(3)); //如果前组都已经是空的了,那么就将第五组的向前移动(因为第五组的时间到期时间实在是太晚,因此一般都不会东它们。)
++base->timer_jiffies; //timer_jiffiers记录的是一个时间点,这个时间点之前到期的定时器都已经处理过了。
list_replace_init(base->tv1.vec + index, &work_list); //第一组位于索引位置的所有定时器都转移到一个临时链表中,从原来的数据结构中删除。
while (!list_empty(head)) { //分别执行各个定时器的处理程序
void (*fn)(unsigned long);
unsigned long data;
timer = list_first_entry(head, struct timer_list,entry);
fn = timer->function;
data = timer->data;
timer_stats_account_timer(timer);
base->running_timer = timer;
detach_timer(timer, 1);
spin_unlock_irq(&base->lock);
call_timer_fn(timer, fn, data);
spin_lock_irq(&base->lock);
}
}
base->running_timer = NULL;
spin_unlock_irq(&base->lock);
}