Python multiprocessing (多进程)使用

官方文档 https://docs.python.org/3.6/library/multiprocessing.html

from multiprocessing import Pool, Manager
import time, random, os

# 需要执行的函数
def f(x):
    time.sleep(random.randint(1, 3))
    return x, os.getpid()


# 回调函数
def p_callback(res):
    x, pid = res
    print("回调进程ID号:%s, 结果:%s" % (pid, x))


def m_callback(res):
    d, pid = res
    d.value += 1
    print("回调进程ID号:%s, 结果:%s" % (pid, d))


if __name__ == '__main__':
    with Pool(4) as p:
        print("----------map----------")
        # 会阻塞,直到所有的进程都执行完毕
        print(p.map(f, [1, 2, 3]))

        print("----------imap----------")
        # 阻塞懒惰map,需要调用结果next 驱动任务继续执行
        it = p.imap(f, range(10))
        for x in it:# 这里相当于主动调用了 next
            print("\t", x)

        print("----------imap_unordered----------")
        # 与map一样都是阻塞懒惰模式,但是imap_unordered不保证结果顺序
        it = p.imap_unordered(f, range(10))
        for x in it:
            print("\t", x)

    with Pool(4) as p:
        for i in range(10):
            # 异步,非阻塞方式执行,主进程需要等待子进程完成
            p.apply_async(f, (i,), callback=p_callback)

        print("-------- apply_async --------")
        p.close()
        p.join() # 主进程等待子进程结束

    # 进程共享对象
    with Manager() as m:
        v = m.Value('i', 0)  # i ctype int 类型
        # 支持类型:list,dict,Namespace,Lock, RLock,Semaphore,BoundedSemaphore,
        # Condition,Event,Barrier, Queue,Value和Array。例如,
        with Pool(4) as p:
            for i in range(10):
                p.apply_async(f, args=(v,), callback=m_callback)
            p.close()
            p.join()

结果如下:

D:\software\Anaconda3\pythonw.exe D:/workspace/PycharmProjects/DeltaGrad/trunk/strategy/load/thread_test.py
----------map----------
[(1, 12344), (2, 22720), (3, 21940)]
----------imap----------
     (0, 20732)
     (1, 12344)
     (2, 22720)
     (3, 21940)
     (4, 22720)
     (5, 21940)
     (6, 12344)
     (7, 22720)
     (8, 20732)
     (9, 12344)
----------imap_unordered----------
     (1, 21940)
     (2, 20732)
     (4, 21940)
     (0, 22720)
     (3, 12344)
     (8, 21940)
     (5, 20732)
     (7, 12344)
     (6, 22720)
     (9, 21940)
-------- apply_async --------
回调进程ID号:17424, 结果:1
回调进程ID号:21744, 结果:2
回调进程ID号:23220, 结果:0
回调进程ID号:17424, 结果:4
回调进程ID号:21744, 结果:5
回调进程ID号:1360, 结果:3
回调进程ID号:21744, 结果:8
回调进程ID号:23220, 结果:6
回调进程ID号:17424, 结果:7
回调进程ID号:1360, 结果:9
回调进程ID号:3164, 结果:Value('i', 1)
回调进程ID号:18120, 结果:Value('i', 2)
回调进程ID号:18116, 结果:Value('i', 3)
回调进程ID号:22108, 结果:Value('i', 4)
回调进程ID号:18120, 结果:Value('i', 5)
回调进程ID号:3164, 结果:Value('i', 6)
回调进程ID号:3164, 结果:Value('i', 7)
回调进程ID号:18116, 结果:Value('i', 8)
回调进程ID号:22108, 结果:Value('i', 9)
回调进程ID号:18120, 结果:Value('i', 10)

你可能感兴趣的:(python)