Lie Groups and Lie Algebras

一些在SLAM中经常用到的关于李群李代数方面的知识

Special Orthogonal Group SO(3) S O ( 3 ) and so(3) s o ( 3 )

The group SO(3) S O ( 3 ) forms a smooth manifold, and its tangent space (at the identity) denoted as so(3) s o ( 3 ) .

SO(3)so(3)={RR3×3RR=I,det(R)=1}={ϕR3,Φ=ϕR3×3} S O ( 3 ) = { R ∈ R 3 × 3 ∣ R R ⊺ = I , det ( R ) = 1 } s o ( 3 ) = { ϕ ∈ R 3 , Φ = ϕ ∧ ∈ R 3 × 3 }

where
ϕ=0ϕ3ϕ2ϕ30ϕ1ϕ2ϕ10 ϕ ∧ = [ 0 − ϕ 3 ϕ 2 ϕ 3 0 − ϕ 1 − ϕ 2 ϕ 1 0 ]

  • SO(3) S O ( 3 ) : Rotation Matrix R R
  • so(3) s o ( 3 ) : Angle-Axis ϕ=θa ϕ = θ a
  • Connection: Rodrigues’s Formula

Exp Map

so(3)SO(3) s o ( 3 ) → S O ( 3 )

R=exp(ϕ)=exp(θa)=cosθI+(1sinθ)aa+sinθa R = exp ⁡ ( ϕ ∧ ) = exp ⁡ ( θ a ∧ ) = cos ⁡ θ I + ( 1 − sin ⁡ θ ) a a ⊺ + sin ⁡ θ a ∧

Introduce Exp(ϕ)=exp(ϕ) E x p ( ϕ ) = exp ⁡ ( ϕ ∧ ) , then the abode equation can written as:

R=Exp(ϕ)=Exp(θa)=cosθI+(1sinθ)aa+sinθa R = E x p ( ϕ ) = E x p ( θ a ) = cos ⁡ θ I + ( 1 − sin ⁡ θ ) a a ⊺ + sin ⁡ θ a ∧

Log Map

SO(3)so(3) S O ( 3 ) → s o ( 3 )

θRaϕ=arccos(tr(R)12)=a=θa θ = arccos ⁡ ( t r ( R ) − 1 2 ) R a = a ϕ = θ a

BCH Formula

Exp(ϕ+Δϕ)Exp(ϕ)Exp(Jr(ϕ)Δϕ)=Exp(Jl(ϕ)Δϕ)Exp(ϕ) E x p ( ϕ + Δ ϕ ) ≈ E x p ( ϕ ) E x p ( J r ( ϕ ) Δ ϕ ) = E x p ( J l ( ϕ ) Δ ϕ ) E x p ( ϕ )

where

Jl(ϕ)=Jr(ϕ)=sinθθI+(1sinθθ)aa+(1cosθθ)a J l ( ϕ ) = J r ( − ϕ ) = sin ⁡ θ θ I + ( 1 − sin ⁡ θ θ ) a a ⊺ + ( 1 − cos ⁡ θ θ ) a ∧

Log(Exp(ϕ)Exp(δϕ))Log(Exp(δϕ)Exp(ϕ))ϕ+J1r(ϕ)δϕJ1l(ϕ)δϕ+ϕ L o g ( E x p ( ϕ ) E x p ( δ ϕ ) ) ≈ ϕ + J r − 1 ( ϕ ) δ ϕ L o g ( E x p ( δ ϕ ) E x p ( ϕ ) ) ≈ J l − 1 ( ϕ ) δ ϕ + ϕ

Property

RExp(ϕ)R=Exp(ϕ)R=exp(RϕR)=Exp(Rϕ)RExp(Rϕ) R E x p ( ϕ ) R ⊺ = exp ⁡ ( R ϕ ∧ R ⊺ ) = E x p ( R ϕ ) ⇔ E x p ( ϕ ) R = R E x p ( R ⊺ ϕ )

Special Euclidean Group SE(3) S E ( 3 ) and se(3) s e ( 3 )

SE(3)se(3)={T=[R0p1]R4×4RSO(3),pR3}={ξ=[ρϕ]R6,ρR3,ϕso(3),ξ=[ϕ0ρ0]R4×4} S E ( 3 ) = { T = [ R p 0 ⊺ 1 ] ∈ R 4 × 4 ∣ R ∈ S O ( 3 ) , p ∈ R 3 } s e ( 3 ) = { ξ = [ ρ ϕ ] ∈ R 6 , ρ ∈ R 3 , ϕ ∈ s o ( 3 ) , ξ ∧ = [ ϕ ∧ ρ 0 ⊺ 0 ] ∈ R 4 × 4 }

  • SE(3) S E ( 3 ) : Pose (Rotation R R + Translation p p ), Matrix
  • se(3) s e ( 3 ) : Angle Axis ϕ ϕ + Translation ρ ρ , Vector

Property

T1=[R0Rp1] T − 1 = [ R ⊺ − R ⊺ p 0 ⊺ 1 ]

Gaussian Random Variables

R˜T˜=RExp(Δϕ)=[RExp(Δϕ)0p+RΔp1] R ~ = R E x p ( Δ ϕ ) T ~ = [ R E x p ( Δ ϕ ) p + R Δ p 0 ⊺ 1 ]

where R R and p p is the noise-free rotation and translation respectively, and Δϕ Δ ϕ and Δp Δ p is the perturbations (Gaussian white noise)

你可能感兴趣的:(SLAM,Math)