网络原理考点之备考总结物理层~网络层

还有7天就是自考的日子了,平时做项目没时间,只有早上看看,这个时间还时有时无的。断断续续,但始终没有放弃过初衷,除了将自考作为上升途径外,更重要的是提升自身的基础知识储备,越来越发现自己还是挺喜欢做这行的。

                                                                                                                                                              激励一下自已!

 

计算机网络的协议标准:TCP/IP标准网络协议。这个协议贯穿于整个网络原理,网络由此实现。

计算机网络体系结构的通信协议划分为七层:

网络原理考点之备考总结物理层~网络层_第1张图片

 1)物理层(Physical Layer)

激活、维持、关闭通信端点之间的机械特性、电气特性、功能特性以及规程特性。物理层确保原始的数据可在各种物理媒体上传输。将数字信号转成光信号或电信号就是在这一层完成的。

物理层记住两个重要的设备名称,中继器(Repeater,也叫放大器)和集线器。

2)数据链路层(Data Link Layer)

其最基本的服务是将源自网络层来的数据可靠地传输到相邻节点的目标机网络层。为达到这一目的,数据链路必须具备一系列相应的功能,主要有:如何将数据组合成数据块,在数据链路层中称这种数据块为帧(frame),帧是数据链路层的传送单位;如何控制帧在物理信道上的传输,包括如何处理传输差错,如何调节发送速率以使与接收方相匹配;以及在两个网络实体之间提供数据链路通路的建立、维持和释放的管理。数据链路层在不可靠的物理介质上提供可靠的传输。该层的作用包括:物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。

  有关数据链路层的重要知识点:

  1> 数据链路层为网络层提供可靠的数据传输;

  2> 基本数据单位为帧;

  3> 主要的协议:以太网协议;

  4> 两个重要设备名称:网桥和交换机。

网桥: 根据MAC帧的目的地址对收到的帧进行转发和过滤.

交换机 :一个多接口的网桥, 以太网交换机的每个接口都直接与一个单个主机或另一个集线器相连, 可以很容易实现VLAN(虚拟局域网)

以太网的MAC帧

MAC帧的格式为 :

网络原理考点之备考总结物理层~网络层_第2张图片

MAC帧格式

  • 目的地址 : 接收方48位的MAC地址
  • 源地址 : 发送方48位的MAC地址
  • 类型字段 : 标志上一层使用的是什么协议, 0×0800为IP数据报

注:

MAC地址

又称计算机的硬件地址, 被固化在适配器(网卡)ROM上的占48位的地址. MAC地址可以用来唯一区别一台计算机, 因为它在全球是独一无二的

分组交换

由于数据在这次曾要被分割成一个一个的帧, 由于不同的链路规定了不同的最大帧长, 即MTU(最大传输单元), 凡是超出这个MTU的帧都必须被分块. 例如一台货车一次能运输5吨的货物, 而有条公路限载重2吨, 那么你只好分3次运输.

 

3)网络层(Network Layer)

“路径选择、路由及逻辑寻址”网络层的目的是实现两个端系统之间的数据透明传送.网络层中涉及众多的协议,其中包括最重要的协议,也是TCP/IP的核心协议——IP协议。IP协议非常简单,仅仅提供不可靠、无连接的传送服务。IP协议的主要功能有:无连接数据报传输、数据报路由选择和差错控制。与IP协议配套使用实现其功能的还有地址解析协议ARP、逆地址解析协议RARP、因特网报文协议ICMP、因特网组管理协议IGMP。

         1> 网络层负责对子网间的数据包进行路由选择。此外,网络层还可以实现拥塞控制、网际互连等功能;

  2> 基本数据单位为IP数据报;

  3> 包含的主要协议:

  IP协议(Internet Protocol,因特网互联协议);

  ICMP协议(Internet Control Message Protocol,因特网控制报文协议);

  ARP协议(Address Resolution Protocol,地址解析协议);

  RARP协议(Reverse Address Resolution Protocol,逆地址解析协议)。

  4> 重要的设备:路由器。

几个重要概念:

IP地址

IP地址又称为软件地址, 存储在计算机的存储器上, IPv4地址为32位, IPv6地址为128位

IP地址和MAC地址

  • 网络层以上使用IP地址, 数据链路层以下使用MAC地址
  • IP地址是逻辑地址, MAC地址是物理地址
  • IP分组中首部的源地址和目的地址在传输中不会改变, MAC帧中首部的源地址和目的地址每到一个路由器会改变一次

IP地址分类

IP地址 = {<网络号>, <主机号>}

网络原理考点之备考总结物理层~网络层_第3张图片

255.255.255.255

  该IP地址指的是受限的广播地址。受限广播地址与一般广播地址(直接广播地址)的区别在于,受限广播地址只能用于本地网络,路由器不会转发以受限广播地址为目的地址的分组;一般广播地址既可在本地广播,也可跨网段广播。例如:主机192.168.1.1/30上的直接广播数据包后,另外一个网段192.168.1.5/30也能收到该数据报;若发送受限广播数据报,则不能收到。

  注:一般的广播地址(直接广播地址)能够通过某些路由器(当然不是所有的路由器),而受限的广播地址不能通过路由器。

0.0.0.0

  常用于寻找自己的IP地址,例如在我们的RARP,BOOTP和DHCP协议中,若某个未知IP地址的主机想要知道自己的IP地址,它就以255.255.255.255为目的地址,向本地范围(具体而言是被各个路由器屏蔽的范围内)的服务器发送IP请求分组。

回环地址

  127.0.0.0/8被用作回环地址,回环地址表示本机的地址,常用于对本机的测试,用的最多的是127.0.0.1。

A、B、C类私有地址

  私有地址(private address)也叫专用地址,它们不会在全球使用,只具有本地意义。

  A类私有地址:10.0.0.0/8,范围是:10.0.0.0~10.255.255.255

  B类私有地址:172.16.0.0/12,范围是:172.16.0.0~172.31.255.255

  C类私有地址:192.168.0.0/16,范围是:192.168.0.0~192.168.255.255

划分子网之后的IP地址 

IP地址 = {<网络号>, <子网号>, <主机号>}

子网划分的主要任务:1、确定子网掩码的长度 2、子网中第一个可用IP地址和最后一个可用IP地址。

详见《网络原理考点之IP地址分配问题解题思路》总结。

子网掩码

一般由一串1和一串0组成, 不管网络有没有划分子网, 将子网掩码和IP地址做按位与运算即可得出网络地址(即网络号,所有网络地址为此网络号的,都会送到这个网络上的路由).

所有的网络都必须使用子网掩码, 同时在路由表中必须有子网掩码这一栏. 如果一个网络不划分子网, 那么该网络的子网掩码就是默认的子网掩码.

A类地址的默认子网掩码为255.0.0.0
B类地址的默认子网掩码为255.255.0.0
C类地址的默认子网掩码为255.255.255.0

尽管划分子网增加了灵活性, 但是却减少了能够连接在网络上的主机总数.

下面总结一下有关子网掩码和网络划分常见的面试考题:

  1)利用子网数来计算

  在求子网掩码之前必须先搞清楚要划分的子网数目,以及每个子网内的所需主机数目。

  (1) 将子网数目转化为二进制来表示;

  如欲将B类IP地址168.195.0.0划分成27个子网:27=11011;

  (2) 取得该二进制的位数,为N;

  该二进制为五位数,N = 5

  (3) 取得该IP地址的类子网掩码,将其主机地址部分的的前N位置1即得出该IP地址划分子网的子网掩码。

  将B类地址的子网掩码255.255.0.0的主机地址前5位置 1,得到 255.255.248.0

  2)利用主机数来计算

  如欲将B类IP地址168.195.0.0划分成若干子网,每个子网内有主机700台:

  (1) 将主机数目转化为二进制来表示;

  700=1010111100;

  (2) 如果主机数小于或等于254(注意去掉保留的两个IP地址),则取得该主机的二进制位数,为N,这里肯定 N<8。如果大于254,则 N>8,这就是说主机地址将占据不止8位;

  该二进制为十位数,N=10;

  (3) 使用255.255.255.255来将该类IP地址的主机地址位数全部置1,然后从后向前的将N位全部置为 0,即为子网掩码值。

  将该B类地址的子网掩码255.255.0.0的主机地址全部置1,得到255.255.255.255,然后再从后向前将后 10位置0,即为:11111111.11111111.11111100.00000000,即255.255.252.0。这就是该欲划分成主机为700台的B类IP地址 168.195.0.0的子网掩码。

  3)还有一种题型,要你根据每个网络的主机数量进行子网地址的规划和计算子网掩码。这也可按上述原则进行计算。

  比如一个子网有10台主机,那么对于这个子网需要的IP地址是:

  10+1+1+1=13

  注意:加的第一个1是指这个网络连接时所需的网关地址,接着的两个1分别是指网络地址和广播地址。

  因为13小于16(16等于2的4次方),所以主机位为4位。而256-16=240,所以该子网掩码为255.255.255.240。

  如果一个子网有14台主机,不少人常犯的错误是:依然分配具有16个地址空间的子网,而忘记了给网关分配地址。这样就错误了,因为14+1+1+1=17,17大于16,所以我们只能分配具有32个地址(32等于2的5次方)空间的子网。这时子网掩码为:255.255.255.224。

构成超网的IP地址

IP地址 = {<网络前缀>, <主机号>}

使用网络前缀, 无分类域间路由选择CIDR

例如, 128.14.35.7/20, 意思是前20位为网络前缀, 后12位为主机号. 另外, CIDR把网络前缀相同的连续的IP地址组成一个”CIDR地址块”

地址掩码 : CIDR使用32位的地址掩码, 类似于子网掩码.

IP数据报

在网络层, 数据是以IP数据报(IP分组)的形式传输的

网络原理考点之备考总结物理层~网络层_第4张图片

IP数据报的格式

首部前20字节为固定长度, 是所有IP数据报必备的. 后4字节是可选字段, 其长度可变.

IP数据报首部固定的字段分析 :

  • 版本号 : IP协议的版本, IPv4或IPv6
  • 首部长度 : 记录了首部的长度, 最大为1111, 即15个32位字长, 即60字节. 当首部长度不是4字节的整数倍时, 需要使用最后的填充字段加以填充.
  • 服务类型 : 一般无用
  • 总长度 : 指首部和数据之和的长度. 最大为216-1 = 65535字节. 但是由于数据链路层规定每一帧的数据长度都有最大长度MTU, 以太网规定MTU为1500字节, 所以超出范围的数据报就必须进行分片处理
  • 标识 : 每产生一个IP数据报, 计数器就+1, 并将此值赋值给标识字段. 再以后需要分片的数据报中, 标识相同说明是同一个数据报
  • 标志 : 占3位, 最低位记为MF(More Fragment). MF = 1说明还有分片; MF = 0说明这已经是最后一个分片. 中间一位记为DF(Don’t Fragment), 意思是不能分片. 只有当DF = 0时才允许分片.
  • 段位移 : 又称片位移, 相对于用户数据字段的起点, 该片从何处开始. 片位移以8个字节为偏移单位. 所以, 每个分片的长度一定是8字节的整数倍.
  • 生存时间 : TTL(Time To Live). 数据报能在因特网中经过路由器的最大次数为255次, 每经过一个路由器则TTL – 1, 为0时丢弃该报文.
  • 协议 : 记录该报文所携带的数据是使用何种协议.
  • 首部检验和 : 只检验数据报的首部, 不检验数据部分. 不为0则丢弃报文.
  • 源地址和目的地址 : 不解释

IP层转发分组的流程

每个路由器内部都维护一个路由表, 路由表包含以下内容(目的网络地址下一跳地址).

使用子网时分组转发时, 路由表必须包含以下三项内容: 目的网络地址子网掩码下一跳地址.

特定主机路由 : 对特定的目的地址指明一个路由

默认路由 : 不知道分组该发给哪个路由器时就发给默认路由. 当一个网络只有很少的对外连接时使用默认路由非常合适.

DHCP协议

  DHCP动态主机设置协议(Dynamic Host Configuration Protocol)是一个局域网的网络协议,使用UDP协议工作,主要有两个用途:给内部网络或网络服务供应商自动分配IP地址,给用户或者内部网络管理员作为对所有计算机作中央管理的手段。

路由器的分组转发算法

  1. 从数据报中拿到目的IP地址D, 得出目的网络地址N
  2. 若N就是与此路由器直接相连的某个网络地址, 则直接交付(不需要再交给其他路由器转发, 直接找到该目的主机交付), 否则 -> (3)
  3. 若路由表中有目的地址为D的特定主机路由, 则把数据报传给该路由器, 否则 -> (4)
  4. 若路由表中有到达网络N的路由, 则把数据报传给该路由器, 否则 -> (5)
  5. 若路由表中有默认路由, 则交给该路由器, 否则 -> (6)
  6. 报告转发分组出错

虚拟专用网VPN

因特网中的所有路由器对该目的地址是专用地址的数据报一律不转发, 下面有3种专用地址(虚拟IP地址)

  • 10.0.0.0 ~ 10.255.255.255
  • 172.16.0.0 ~ 172.31.255.255
  • 192.168.0.0 ~ 192.168.255.255

假设现在公司A有一个部门在广州和另一个在上海, 而他们在当地都有自己的专用网. 那么怎么将这两个专用网连接起来呢?

  1. 租用电信的通信线路为本机构专用, 但是太贵了
  2. 利用公用的因特网当做通信载体, 这就是虚拟专用网VPN

网络地址转换NAT

多个专用网内部的主机公用一个NAT路由器的IP地址, 在主机发送和接收IP数据报时必须先通过NAT路由器进行网络地址转换.

网络原理考点之备考总结物理层~网络层_第5张图片

NAT路由器的工作原理

NAT网络地址转换(Network Address Translation)属接入广域网(WAN)技术,是一种将私有(保留)地址转化为合法IP地址的转换技术,它被广泛应用于各种类型Internet接入方式和各种类型的网络中。原因很简单,NAT不仅完美地解决了lP地址不足的问题,而且还能够有效地避免来自网络外部的攻击,隐藏并保护网络内部的计算机。

不仅如此, NAT还能使用端口号, 摇身一变成为网络地址和端口转换NAPT

ARP协议

ARP是解决同一个局域网上的主机或路由器的IP地址和MAC地址的映射问题, 即 IP地址 -> ARP -> MAC地址

每一个主机都有一个ARP高速缓存, 里面有本局域网上的各主机和路由器的IP地址到MAC地址的映射表. 以下是ARP的工作原理 :

网络原理考点之备考总结物理层~网络层_第6张图片

(1)根据主机A上的路由表内容,IP确定用于访问主机B的转发IP地址是192.168.1.2。然后A主机在自己的本地ARP缓存中检查主机B的匹配MAC地址。

  (2)如果主机A在ARP缓存中没有找到映射,它将询问192.168.1.2的硬件地址,从而将ARP请求帧广播到本地网络上的所有主机。源主机A的IP地址和MAC地址都包括在ARP请求中。本地网络上的每台主机都接收到ARP请求并且检查是否与自己的IP地址匹配。如果主机发现请求的IP地址与自己的IP地址不匹配,它将丢弃ARP请求。

  (3)主机B确定ARP请求中的IP地址与自己的IP地址匹配,则将主机A的IP地址和MAC地址映射添加到本地ARP缓存中。

  (4)主机B将包含其MAC地址的ARP回复消息直接发送回主机A。

  (5)当主机A收到从主机B发来的ARP回复消息时,会用主机B的IP和MAC地址映射更新ARP缓存。本机缓存是有生存期的,生存期结束后,将再次重复上面的过程。主机B的MAC地址一旦确定,主机A就能向主机B发送IP通信了。

  逆地址解析协议,即RARP,功能和ARP协议相对,其将局域网中某个主机的物理地址转换为IP地址,比如局域网中有一台主机只知道物理地址而不知道IP地址,那么可以通过RARP协议发出征求自身IP地址的广播请求,然后由RARP服务器负责回答。

  RARP协议工作流程:

  (1)给主机发送一个本地的RARP广播,在此广播包中,声明自己的MAC地址并且请求任何收到此请求的RARP服务器分配一个IP地址;

  (2)本地网段上的RARP服务器收到此请求后,检查其RARP列表,查找该MAC地址对应的IP地址;

  (3)如果存在,RARP服务器就给源主机发送一个响应数据包并将此IP地址提供给对方主机使用;

  (4)如果不存在,RARP服务器对此不做任何的响应;

  (5)源主机收到从RARP服务器的响应信息,就利用得到的IP地址进行通讯;如果一直没有收到RARP服务器的响应信息,表示初始化失败。

那如果是跨网络使用ARP呢?

  1. 在本网络上广播
  2. 未找到该主机, 则到路由器
  3. 路由器帮忙转发(在另一网络上广播)
  4. 找到了则完成ARP请求, 未找到则返回(2)

  常见的路由选择协议有:RIP协议、OSPF协议。

  RIP协议 :底层是贝尔曼福特算法,它选择路由的度量标准(metric)是跳数,最大跳数是15跳,如果大于15跳,它就会丢弃数据包。

  OSPF协议 :Open Shortest Path First开放式最短路径优先,底层是迪杰斯特拉算法,是链路状态路由选择协议,它选择路由的度量标准是带宽,延迟。

你可能感兴趣的:(自学考试)