#include
#include
#include
#define sqr(x) ((x)*(x))
#define MAX_CLUSTERS 16
#define MAX_ITERATIONS 100
#define BIG_double (INFINITY)
void fail(char *str)
{
printf(str);
exit(-1);
}
double calc_distance(int dim, double *p1, double *p2)
{
double distance_sq_sum = 0;
for (int ii = 0; ii < dim; ii++)
distance_sq_sum += sqr(p1[ii] - p2[ii]);
return distance_sq_sum;
}
void calc_all_distances(int dim, int n, int k, double *X, double *centroid, double *distance_output)
{
for (int ii = 0; ii < n; ii++) // for each point
for (int jj = 0; jj < k; jj++) // for each cluster
{
// calculate distance between point and cluster centroid
distance_output[ii*k + jj] = calc_distance(dim, &X[ii*dim], ¢roid[jj*dim]);
}
}
double calc_total_distance(int dim, int n, int k, double *X, double *centroids, int *cluster_assignment_index)
// NOTE: a point with cluster assignment -1 is ignored
{
double tot_D = 0;
// for every point
for (int ii = 0; ii < n; ii++)
{
// which cluster is it in?
int active_cluster = cluster_assignment_index[ii];
// sum distance
if (active_cluster != -1)
tot_D += calc_distance(dim, &X[ii*dim], ¢roids[active_cluster*dim]);
}
return tot_D;
}
void choose_all_clusters_from_distances(int dim, int n, int k, double *distance_array, int *cluster_assignment_index)
{
// for each point
for (int ii = 0; ii < n; ii++)
{
int best_index = -1;
double closest_distance = BIG_double;
// for each cluster
for (int jj = 0; jj < k; jj++)
{
// distance between point and cluster centroid
double cur_distance = distance_array[ii*k + jj];
if (cur_distance < closest_distance)
{
best_index = jj;
closest_distance = cur_distance;
}
}
// record in array
cluster_assignment_index[ii] = best_index;
}
}
void calc_cluster_centroids(int dim, int n, int k, double *X, int *cluster_assignment_index, double *new_cluster_centroid)
{
int cluster_member_count[MAX_CLUSTERS];
// initialize cluster centroid coordinate sums to zero
for (int ii = 0; ii < k; ii++)
{
cluster_member_count[ii] = 0;
for (int jj = 0; jj < dim; jj++)
new_cluster_centroid[ii*dim + jj] = 0;
}
// sum all points
// for every point
for (int ii = 0; ii < n; ii++)
{
// which cluster is it in?
int active_cluster = cluster_assignment_index[ii];
// update count of members in that cluster
cluster_member_count[active_cluster]++;
// sum point coordinates for finding centroid
for (int jj = 0; jj < dim; jj++)
new_cluster_centroid[active_cluster*dim + jj] += X[ii*dim + jj];
}
// now divide each coordinate sum by number of members to find mean/centroid
// for each cluster
for (int ii = 0; ii < k; ii++)
{
if (cluster_member_count[ii] == 0)
printf("WARNING: Empty cluster %d! \n", ii);
// for each dimension
for (int jj = 0; jj < dim; jj++)
new_cluster_centroid[ii*dim + jj] /= cluster_member_count[ii]; /// XXXX will divide by zero here for any empty clusters!
}
}
void get_cluster_member_count(int n, int k, int *cluster_assignment_index, int *cluster_member_count)
{
// initialize cluster member counts
for (int ii = 0; ii < k; ii++)
cluster_member_count[ii] = 0;
// count members of each cluster
for (int ii = 0; ii < n; ii++)
cluster_member_count[cluster_assignment_index[ii]]++;
}
void update_delta_score_table(int dim, int n, int k, double *X, int *cluster_assignment_cur, double *cluster_centroid, int *cluster_member_count, double *point_move_score_table, int cc)
{
// for every point (both in and not in the cluster)
for (int ii = 0; ii < n; ii++)
{
double dist_sum = 0;
for (int kk = 0; kk < dim; kk++)
{
double axis_dist = X[ii*dim + kk] - cluster_centroid[cc*dim + kk];
dist_sum += sqr(axis_dist);
}
double mult = ((double)cluster_member_count[cc] / (cluster_member_count[cc] + ((cluster_assignment_cur[ii]==cc) ? -1 : +1)));
point_move_score_table[ii*dim + cc] = dist_sum * mult;
}
}
void perform_move(int dim, int n, int k, double *X, int *cluster_assignment, double *cluster_centroid, int *cluster_member_count, int move_point, int move_target_cluster)
{
int cluster_old = cluster_assignment[move_point];
int cluster_new = move_target_cluster;
// update cluster assignment array
cluster_assignment[move_point] = cluster_new;
// update cluster count array
cluster_member_count[cluster_old]--;
cluster_member_count[cluster_new]++;
if (cluster_member_count[cluster_old] <= 1)
printf("WARNING: Can't handle single-member clusters! \n");
// update centroid array
for (int ii = 0; ii < dim; ii++)
{
cluster_centroid[cluster_old*dim + ii] -= (X[move_point*dim + ii] - cluster_centroid[cluster_old*dim + ii]) / cluster_member_count[cluster_old];
cluster_centroid[cluster_new*dim + ii] += (X[move_point*dim + ii] - cluster_centroid[cluster_new*dim + ii]) / cluster_member_count[cluster_new];
}
}
void cluster_diag(int dim, int n, int k, double *X, int *cluster_assignment_index, double *cluster_centroid)
{
int cluster_member_count[MAX_CLUSTERS];
get_cluster_member_count(n, k, cluster_assignment_index, cluster_member_count);
printf(" Final clusters \n");
for (int ii = 0; ii < k; ii++)
printf(" cluster %d: members: %8d, centroid (%.1f %.1f) \n", ii, cluster_member_count[ii], cluster_centroid[ii*dim + 0], cluster_centroid[ii*dim + 1]);
}
void copy_assignment_array(int n, int *src, int *tgt)
{
for (int ii = 0; ii < n; ii++)
tgt[ii] = src[ii];
}
int assignment_change_count(int n, int a[], int b[])
{
int change_count = 0;
for (int ii = 0; ii < n; ii++)
if (a[ii] != b[ii])
change_count++;
return change_count;
}
void kmeans(
int dim, // dimension of data
double *X, // pointer to data
int n, // number of elements
int k, // number of clusters
double *cluster_centroid, // initial cluster centroids
int *cluster_assignment_final // output
)
{
double *dist = (double *)malloc(sizeof(double) * n * k);
int *cluster_assignment_cur = (int *)malloc(sizeof(int) * n);
int *cluster_assignment_prev = (int *)malloc(sizeof(int) * n);
double *point_move_score = (double *)malloc(sizeof(double) * n * k);
if (!dist || !cluster_assignment_cur || !cluster_assignment_prev || !point_move_score)
fail("Error allocating dist arrays");
// initial setup
calc_all_distances(dim, n, k, X, cluster_centroid, dist);
choose_all_clusters_from_distances(dim, n, k, dist, cluster_assignment_cur);
copy_assignment_array(n, cluster_assignment_cur, cluster_assignment_prev);
// BATCH UPDATE
double prev_totD = BIG_double;
int batch_iteration = 0;
while (batch_iteration < MAX_ITERATIONS)
{
// printf("batch iteration %d \n", batch_iteration);
// cluster_diag(dim, n, k, X, cluster_assignment_cur, cluster_centroid);
// update cluster centroids
calc_cluster_centroids(dim, n, k, X, cluster_assignment_cur, cluster_centroid);
// deal with empty clusters
// XXXXXXXXXXXXXX
// see if we've failed to improve
double totD = calc_total_distance(dim, n, k, X, cluster_centroid, cluster_assignment_cur);
if (totD > prev_totD)
// failed to improve - currently solution worse than previous
{
// restore old assignments
copy_assignment_array(n, cluster_assignment_prev, cluster_assignment_cur);
// recalc centroids
calc_cluster_centroids(dim, n, k, X, cluster_assignment_cur, cluster_centroid);
printf(" negative progress made on this step - iteration completed (%.2f) \n", totD - prev_totD);
// done with this phase
break;
}
// save previous step
copy_assignment_array(n, cluster_assignment_cur, cluster_assignment_prev);
// move all points to nearest cluster
calc_all_distances(dim, n, k, X, cluster_centroid, dist);
choose_all_clusters_from_distances(dim, n, k, dist, cluster_assignment_cur);
int change_count = assignment_change_count(n, cluster_assignment_cur, cluster_assignment_prev);
printf("%3d %u %9d %16.2f %17.2f\n", batch_iteration, 1, change_count, totD, totD - prev_totD);
fflush(stdout);
// done with this phase if nothing has changed
if (change_count == 0)
{
printf(" no change made on this step - iteration completed \n");
break;
}
prev_totD = totD;
batch_iteration++;
}
// write to output array
copy_assignment_array(n, cluster_assignment_cur, cluster_assignment_final);
free(dist);
free(cluster_assignment_cur);
free(cluster_assignment_prev);
free(point_move_score);
}