- 门控循环单元(GRU)
six.学长
机器学习深度学习gru深度学习人工智能
门控循环单元(GRU)门控循环单元(GatedRecurrentUnit,GRU)是长短期记忆(LSTM)的简化版本。GRU通过减少门控机制的数量,提高了计算效率,同时在很多任务上性能与LSTM相近。GRU由两个主要的门组成:重置门和更新门。这些门帮助GRU决定如何在每个时间步更新和传递信息。GRU结构GRU的结构相比LSTM更简单,没有独立的记忆细胞状态。它通过两个门(重置门和更新门)来控制信息
- 【颠覆认知】大模型开发终极实战:30分钟用LangChain打造「超级AI客服」系统(附全代码+黑科技调参技巧)
煜bart
人工智能
重磅提示:文末含99%开发者不知道的Prompt逆向注入破解方案!---###一、撕开大模型开发的遮羞布:传统方案的三大致命陷阱传统AI客服系统开发面临:1.对话记忆金鱼症(7轮对话必失忆)2.知识库更新堪比器官移植3.业务逻辑与AI模型强耦合我们
- Python 科学计算与机器学习入门:NumPy + Scikit-Learn 实战指南
吴师兄大模型
pythonnumpyscikit-learn人工智能开发语言机器学习编程
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- C语言占位符详细介绍
南玖yy
C语言基础c语言开发语言
1.printf()的占位符有许多种类,与C语⾔的数据类型相对应。下⾯按照字⺟顺序,颜色标出常⽤的占位符,⽅便大家记忆。•%a:⼗六进制浮点数,字⺟输出为⼩写。•%A:⼗六进制浮点数,字⺟输出为⼤写。•%c:字符。•%d:⼗进制整数。•%e:使⽤科学计数法的浮点数,指数部分的e为⼩写。•%E:使⽤科学计数法的浮点数,指数部分的E为⼤写。•%i:整数,基本等同于%d,除了scanf有一点区别。•%f
- “杀疯了”,头部玩家纷纷下场,冲榜高阶智驾第一梯队!
高工智能汽车
自动驾驶人工智能
2025年的中国乘用车市场份额战与销量突破口,高阶智驾无疑是关键赛点。日前,吉利也高调入场,再次掀起高阶智驾市场普及战的新高潮。类似于比亚迪的天神之眼分成ABC三挡,对应不同级别车型,吉利的千里浩瀚智驾方案更加多元化,分为H1、H3、H5、H7和H9共5个不同层级的智驾方案。其中H1采用10V5R传感器方案,功能方面可实现高速NOA和记忆泊车HPA,主打极致性价比。根据资料来看,H1采用的是双黑芝
- C++中栈的用法
冬瓜生鲜
1大学学习的算法
简单记忆,具体详细见:https://blog.csdn.net/qq_20366761/article/details/70053813c++栈的方法的基本用法:push():向栈内压入一个成员;pop():从栈顶弹出一个成员;empty():如果栈为空返回true,否则返回false;top():返回栈顶,但不删除成员;size():返回栈内元素的大小;#include#includeusin
- apt/yum/dnf/dkg命令详细:软件安装
黑子哥呢?
运维linux运维
apt命令apt(AdvancedPackageTool)是Debian及其衍生版(如Ubuntu)中广泛使用的软件包管理工具。它提供了一系列简洁且易于记忆的命令,用于查找、安装、升级、删除和管理软件包。下面将对apt命令进行详细解析。1.apt命令的基本用法apt命令的基本语法如下:apt[options][command][package...]options:可选参数,用于指定命令的行为,如
- LL(1)文法与左递归
Vitalia
#形式语言与自动机LL(1)文法左递归编译原理
没有超群的记忆力和过目不忘的能力,担心自己忘了,就写下来好啦。考虑如下文法,S->SA|AA->a如何说明该文法是LL(1)的?我们首先要明确,LL(1)是文法的一种性质,它描述的是这样一种文法,Predictiveparsers,thatis,recursive-descentparsersneedingnobacktracking,canbeconstructedforaclassofgram
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- Linux系统之部署记忆配对网页小游戏
江湖有缘
玩转小游戏合集linux服务器web小游戏
Linux系统之部署记忆配对网页小游戏一、小游戏介绍1.1小游戏简介1.2项目预览二、本次实践介绍2.1本地环境规划2.2本次实践介绍三、检查本地环境3.1检查系统版本3.2检查系统内核版本3.3检查软件源四、安装Apache24.1安装Apache2软件4.2启动apache2服务4.3查看apache2服务状态4.4防火墙设置4.5浏览器测试web服务五、部署小游戏5.1下载小游戏源码5.2查
- 用Python开发一个简单的“记忆翻牌”小游戏
风亦辰739
Python小游戏pythonpygame开发语言
“记忆翻牌”是一款经典的益智小游戏,玩家需要通过记忆卡片的位置配对相同的图案。今天我们将使用pygame库实现一个简单版本的记忆翻牌游戏。一、游戏规则游戏开始时,卡片会随机排列并翻面。玩家一次可以翻两张卡片:如果图案相同,卡片保持翻开状态。如果图案不同,卡片会短暂显示后翻回去。游戏目标是用最少的步数找到所有配对。二、开发环境开发工具:任意Python编辑器(如PyCharm、VSCode)。依赖库
- 面试基础---面试刷题推荐 动态规划算法:背包问题与最长公共子序列
WeiLai1112
leetcode刷题算法面试动态规划java分布式
动态规划算法:背包问题与最长公共子序列引言:动态规划的核心思想动态规划(DynamicProgramming,DP)是一种解决复杂问题的算法思想,通过将问题分解为子问题,并保存子问题的解,避免重复计算,从而提高效率。本文将详细讲解动态规划在背包问题和最长公共子序列中的应用,并提供易于记忆的代码模板。一、背包问题1.1问题描述给定n个物品,每个物品有一个重量w[i]和一个价值v[i]。现在有一个容量
- 面试基础---面试刷题推荐 二分查找算法:搜索旋转排序数组
WeiLai1112
leetcode刷题算法面试数据结构架构分布式职场和发展java
二分查找算法:搜索旋转排序数组引言:二分查找的核心思想二分查找是一种高效的搜索算法,适用于有序数组。它的核心思想是通过不断缩小搜索范围,将时间复杂度从O(n)降低到O(logn)。本文将以“搜索旋转排序数组”为例,详细讲解二分查找的实现,并提供易于记忆的代码模板。一、问题描述1.1题目假设一个按升序排列的数组在某个未知的点上进行了旋转(例如,[0,1,2,4,5,6,7]可能变为[4,5,6,7,
- Vim忍者速成秘卷:让你的键盘冒出残影の奥义
ivwdcwso
操作系统与云原生vim编辑器程序员忍道终端美学效率革命linux
核心原理通过超低延迟配置+肌肉记忆优化+视觉欺骗技术,达成行云流水的操作体验。就像《火影忍者》结印般流畅!⚡残影生成术(基础篇)"️贴地飞行模式(.vimrc极速配置)settimeoutlen=300"快捷键响应时间压缩至300ms(武士刀级响应)setttyfast"激活终端极速传输模式setlazyredraw"执行宏时暂停界面刷新(性能提升50%)"手里剑光标追踪术autocmdCurso
- 【GPT入门】第18课 langchain介绍与API初步体验
*星星之火*
大模型gptlangchain
【GPT入门】langchain第一课langchain介绍与API初步体验1.langchain介绍定义特点1.模块化与灵活性2.链式调用机制3.数据连接能力4.记忆管理功能5.提示工程支持6.可扩展性2.langchain核心组件架构图3.最简单的helloworld入门1.langchain介绍LangChain是一个用于开发由语言模型驱动的应用程序的开源框架,它在大语言模型(LLM)应用开
- 「基于大模型的智能客服系统」语义理解、上下文记忆与反馈机制设计
网罗开发
AI大模型人工智能人工智能职场和发展
网罗开发(小红书、快手、视频号同名) 大家好,我是展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、HarmonyOS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。图书作者:《ESP32-C3物联网工程开发实战》图书作者:《SwiftUI入门,进阶与实战》超级个体:CO
- 安装oVirt环境
唯独不开心
oVirt云计算
1.oVirtEngine硬件要求资源最低推荐中央处理器双核x86_64CPU.一个四核x86_64CPU或多个双核x86_64CPU。记忆4GB的可用系统RAM(如果未安装DataWarehouse且现有进程未占用内存)。16GB的系统RAM。硬盘25GB本地可访问的可写磁盘空间。50GB本地可访问的可写磁盘空间。您可以使用RHV引擎历史数据库大小计算器来计算引擎历史数据库大小的适当磁盘空间。网
- Python 网络编程实战:5分钟实现多线程下载工具与 Web 服务器
吴师兄大模型
pythonWeb服务器多线程下载工具网络编程人工智能开发语言PYTHON
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- RNN 实战指南:用 PyTorch 从零实现文本分类
吴师兄大模型
PyTorchpytorchpython人工智能RNN循环神经网络文本分类开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 使用Vite创建Vue3项目
Asafoetida阿魏
vue.js前端
为啥选vite创建,请看vite官网给出的解释,我只是一个不想记忆的咸鱼。使用npm搭建项目,要求Node.js版本>=14.18.0。1.报上名来创建:在命令行输入npm-v检查版本,然后根据版本做选择,真的很快!!!#npm6.x版本,使用这个npminitvite@latest--templatevue#npm7版本以上,要多加两条杠npminitvite@latest----templat
- 开源模型应用落地-qwen模型小试-Qwen-Agent(十一)
开源技术探险家
开源模型-实际应用落地#深度学习自然语言处理语言模型
一、前言Qwen-Agent是一个利用开源语言模型Qwen的工具使用、规划和记忆功能的框架。其模块化设计允许开发人员创建具有特定功能的定制代理,为各种应用程序提供了坚实的基础。同时,开发者可以利用Qwen-Agent的原子组件构建智能代理,以理解和响应用户查询。二、术语2.1.Qwen-Agent是一个开发框架。开发者可基于本框架开发Agent应用,充分利用基于通义千问模型(Qwen)的指令遵循、
- web前端面试之——原型与原型链
tsuyoii
前端面试javascript面试javascript前端
原型与原型链(一)原型理解与记忆核心:F.prototype===f.__proto__===原型对象(原型)f.constructor===F.prototype.constructor===F===f.__proto__.constructor解释:每个函数F(也是对象,js中一切皆对象)在初始化时都拥有一个prototype属性,该属性指向原型对象(即原型)F=newFunction();F
- 阿里OSS--基本介绍
AugustShuai
#阿里OSS文件存储java分布式大数据阿里OSS文件存储
文章目录相关链接一.文件存储系统介绍1.储存系统的选择二.阿里OSS的基础介绍介绍使用场景三.阿里OSS的基础概念存储空间(Bucket)对象/文件(Object)Region(地域)Endpoint(访问域名)AccessKey(访问密钥)强一致性数据冗余机制四.阿里OSS基础概念对比图(方便记忆理解)OSS术语表相关链接Fastdfs—基本介绍和底层模型详解阿里OSS–官方文档阿里OSS–基本
- 长文本生成的“中间迷途”:当AI在信息洪流中迷失与觉醒
步子哥
AGI通用人工智能人工智能
长文本生成的困境:当AI在信息洪流中迷失在人工智能领域,大型语言模型(LLM)如同拥有无限记忆的超级读者,能轻松消化整座图书馆的藏书。但当被要求撰写万字论文时,这些"博学者"往往只能产出不足两千字的短文——这就像让美食家品尝满汉全席后,只能复述前菜和甜点的味道。更令人困扰的是,当输入文本超过8000词时,模型会像在图书馆迷路的读者,对"中间书架"的内容视而不见,这种现象被形象地称为"中间丢失"(L
- 【AI深度学习网络】Transformer时代,RNN(循环神经网络)为何仍是时序建模的“秘密武器”?
arbboter
人工智能rnn人工智能深度学习循环神经网络记忆序列数据循环连接
引言:什么是循环神经网络(RNN)?循环神经网络(RecurrentNeuralNetwork,RNN)是一种专门处理序列数据(如文本、语音、时间序列)的深度学习模型。与传统神经网络不同,RNN具有“记忆”能力,能够通过内部状态(隐藏状态)保留历史信息,从而捕捉序列中的时间依赖关系。在自然语言处理、语音识别、时间序列预测等领域,数据本质上是序列化的——即当前数据点与前后数据点存在依赖关系。传统的前
- 无人机动态追踪技术难点与距离分析!
云卓SKYDROID
无人机人工智能云卓科技智能跟踪吊舱
一、技术难点概述目标识别与跟踪算法的鲁棒性复杂场景适应性**:在动态背景(如人群、森林)或光照变化(逆光、夜间)下,算法需精准区分目标与干扰物。传统计算机视觉方法(如光流法、卡尔曼滤波)易受干扰,需结合深度学习(如YOLO、SiamRPN++)提升抗干扰能力。多目标跟踪与遮挡处理**:目标被遮挡或短暂消失时,需通过轨迹预测或特征匹配恢复跟踪,对算法的记忆能力和实时性要求极高。实时性要求**:算法需
- 考研复习之记忆方法
herosunly
考名校研究生经验分享考研
大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。授权多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。
- 【学习思维模型】
宇希啊
思维模型学习
学习思维模型一、理解类模型二、记忆类模型三、解决问题类模型四、结构化学习模型五、效率与习惯类模型六、高阶思维模型七、实践建议八、新增学习思维模型**1.波利亚问题解决四步法****2.主动回忆(ActiveRecall)****3.鱼骨图(因果图/IshikawaDiagram)****4.MECE原则(MutuallyExclusive,CollectivelyExhaustive)****5.
- 公务员行测之速算分数记忆检验-无答案版本
Lemon爱吃苹果
公务员公务员计算机
前言为了提高速算速度,有一些分数是必须要记忆的,这个博客是为了检验自己记忆效果的,答案在下一篇博客上面,自己查看哟!!!速算之分数记忆检验12=%\frac{1}{2}=\%21=%13=%\frac{1}{3}=\%31=%14=%\frac{1}{4}=\%41=%15=%\frac{1}{5}=\%51=%16=%\frac{1}{6}=\%61=%17=%\frac{1}{7}=\%71=
- PyTorch实现CNN:CIFAR-10图像分类实战教程
吴师兄大模型
PyTorchpytorchcnnCIFAR-10图像分类人工智能python卷积神经网络开发语言
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f