COCO数据集合解析

最近在使用COCO数据集做框检测,对其内容进行记录。

1、首先是下载COCO

MS COCO 数据集主页:http://mscoco.org/,进去以后点击DownLoad下载,2017要下载这些,总过有20多G在这里插入图片描述

2、安装pycocotools

这个是解析COCO代码的工具包,具体安装方式为

apt-get install cython #先得在系统安装cython 

pip install cython #然后再用PIP安装一下
pip install pycocotools

3、解析COCO

ann_train_file='annotations/instances_train2017.json'
coco_train = COCO(ann_train_file)
#loading annotations into memory...
#Done (t=17.70s)
#creating index...
#index created!
coco_train.dataset['categories']
Out[25]: 
[{'supercategory': 'person', 'id': 1, 'name': 'person'},
 {'supercategory': 'vehicle', 'id': 2, 'name': 'bicycle'},
 {'supercategory': 'vehicle', 'id': 3, 'name': 'car'},
 {'supercategory': 'vehicle', 'id': 4, 'name': 'motorcycle'},
 {'supercategory': 'vehicle', 'id': 5, 'name': 'airplane'},
 {'supercategory': 'vehicle', 'id': 6, 'name': 'bus'},
 {'supercategory': 'vehicle', 'id': 7, 'name': 'train'},
 {'supercategory': 'vehicle', 'id': 8, 'name': 'truck'},
 {'supercategory': 'vehicle', 'id': 9, 'name': 'boat'},
 {'supercategory': 'outdoor', 'id': 10, 'name': 'traffic light'},
 {'supercategory': 'outdoor', 'id': 11, 'name': 'fire hydrant'},
 {'supercategory': 'outdoor', 'id': 13, 'name': 'stop sign'},
 {'supercategory': 'outdoor', 'id': 14, 'name': 'parking meter'},
 {'supercategory': 'outdoor', 'id': 15, 'name': 'bench'},
 {'supercategory': 'animal', 'id': 16, 'name': 'bird'},
 {'supercategory': 'animal', 'id': 17, 'name': 'cat'},
 {'supercategory': 'animal', 'id': 18, 'name': 'dog'},
 {'supercategory': 'animal', 'id': 19, 'name': 'horse'},
 {'supercategory': 'animal', 'id': 20, 'name': 'sheep'},
 {'supercategory': 'animal', 'id': 21, 'name': 'cow'},
 {'supercategory': 'animal', 'id': 22, 'name': 'elephant'},
 {'supercategory': 'animal', 'id': 23, 'name': 'bear'},
 {'supercategory': 'animal', 'id': 24, 'name': 'zebra'},
 {'supercategory': 'animal', 'id': 25, 'name': 'giraffe'},
 {'supercategory': 'accessory', 'id': 27, 'name': 'backpack'},
 {'supercategory': 'accessory', 'id': 28, 'name': 'umbrella'},
 {'supercategory': 'accessory', 'id': 31, 'name': 'handbag'},
 {'supercategory': 'accessory', 'id': 32, 'name': 'tie'},
 {'supercategory': 'accessory', 'id': 33, 'name': 'suitcase'},
 {'supercategory': 'sports', 'id': 34, 'name': 'frisbee'},
 {'supercategory': 'sports', 'id': 35, 'name': 'skis'},
 {'supercategory': 'sports', 'id': 36, 'name': 'snowboard'},
 {'supercategory': 'sports', 'id': 37, 'name': 'sports ball'},
 {'supercategory': 'sports', 'id': 38, 'name': 'kite'},
 {'supercategory': 'sports', 'id': 39, 'name': 'baseball bat'},
 {'supercategory': 'sports', 'id': 40, 'name': 'baseball glove'},
 {'supercategory': 'sports', 'id': 41, 'name': 'skateboard'},
 {'supercategory': 'sports', 'id': 42, 'name': 'surfboard'},
 {'supercategory': 'sports', 'id': 43, 'name': 'tennis racket'},
 {'supercategory': 'kitchen', 'id': 44, 'name': 'bottle'},
 {'supercategory': 'kitchen', 'id': 46, 'name': 'wine glass'},
 {'supercategory': 'kitchen', 'id': 47, 'name': 'cup'},
 {'supercategory': 'kitchen', 'id': 48, 'name': 'fork'},
 {'supercategory': 'kitchen', 'id': 49, 'name': 'knife'},
 {'supercategory': 'kitchen', 'id': 50, 'name': 'spoon'},
 {'supercategory': 'kitchen', 'id': 51, 'name': 'bowl'},
 {'supercategory': 'food', 'id': 52, 'name': 'banana'},
 {'supercategory': 'food', 'id': 53, 'name': 'apple'},
 {'supercategory': 'food', 'id': 54, 'name': 'sandwich'},
 {'supercategory': 'food', 'id': 55, 'name': 'orange'},
 {'supercategory': 'food', 'id': 56, 'name': 'broccoli'},
 {'supercategory': 'food', 'id': 57, 'name': 'carrot'},
 {'supercategory': 'food', 'id': 58, 'name': 'hot dog'},
 {'supercategory': 'food', 'id': 59, 'name': 'pizza'},
 {'supercategory': 'food', 'id': 60, 'name': 'donut'},
 {'supercategory': 'food', 'id': 61, 'name': 'cake'},
 {'supercategory': 'furniture', 'id': 62, 'name': 'chair'},
 {'supercategory': 'furniture', 'id': 63, 'name': 'couch'},
 {'supercategory': 'furniture', 'id': 64, 'name': 'potted plant'},
 {'supercategory': 'furniture', 'id': 65, 'name': 'bed'},
 {'supercategory': 'furniture', 'id': 67, 'name': 'dining table'},
 {'supercategory': 'furniture', 'id': 70, 'name': 'toilet'},
 {'supercategory': 'electronic', 'id': 72, 'name': 'tv'},
 {'supercategory': 'electronic', 'id': 73, 'name': 'laptop'},
 {'supercategory': 'electronic', 'id': 74, 'name': 'mouse'},
 {'supercategory': 'electronic', 'id': 75, 'name': 'remote'},
 {'supercategory': 'electronic', 'id': 76, 'name': 'keyboard'},
 {'supercategory': 'electronic', 'id': 77, 'name': 'cell phone'},
 {'supercategory': 'appliance', 'id': 78, 'name': 'microwave'},
 {'supercategory': 'appliance', 'id': 79, 'name': 'oven'},
 {'supercategory': 'appliance', 'id': 80, 'name': 'toaster'},
 {'supercategory': 'appliance', 'id': 81, 'name': 'sink'},
 {'supercategory': 'appliance', 'id': 82, 'name': 'refrigerator'},
 {'supercategory': 'indoor', 'id': 84, 'name': 'book'},
 {'supercategory': 'indoor', 'id': 85, 'name': 'clock'},
 {'supercategory': 'indoor', 'id': 86, 'name': 'vase'},
 {'supercategory': 'indoor', 'id': 87, 'name': 'scissors'},
 {'supercategory': 'indoor', 'id': 88, 'name': 'teddy bear'},
 {'supercategory': 'indoor', 'id': 89, 'name': 'hair drier'},
 {'supercategory': 'indoor', 'id': 90, 'name': 'toothbrush'}]
coco_train.dataset['images'][0]
Out[26]: 
{'license': 3,
 'file_name': '000000391895.jpg',
 'coco_url': 'http://images.cocodataset.org/train2017/000000391895.jpg',
 'height': 360,
 'width': 640,
 'date_captured': '2013-11-14 11:18:45',
 'flickr_url': 'http://farm9.staticflickr.com/8186/8119368305_4e622c8349_z.jpg',
 'id': 391895}
coco_train.dataset['annotations'][0]
Out[27]: 
{'segmentation': [[239.97,
   260.24,
   222.04,
   270.49,
   199.84,
   253.41,
   213.5,
   227.79,
   259.62,
   200.46,
   274.13,
   202.17,
   277.55,
   210.71,
   249.37,
   253.41,
   237.41,
   264.51,
   242.54,
   261.95,
   228.87,
   271.34]],
 'area': 2765.1486500000005,
 'iscrowd': 0,
 'image_id': 558840,
 'bbox': [199.84, 200.46, 77.71, 70.88],
 'category_id': 58,
 'id': 156}




详细的介绍可以看官网和知乎[链接](https://zhuanlan.zhihu.com/p/29393415)

你可能感兴趣的:(python,算法)