参考链接:https://blog.csdn.net/han_xiaoyang/article/details/50469334
上面带着代价走马观花过了一遍机器学习的若干算法,下面我们试着总结总结在拿到一个实际问题的时候,如果着手使用机器学习算法去解决问题,其中的一些注意点以及核心思路。主要包括以下内容:
问题来了,过拟合咋办?
针对过拟合,有几种办法可以处理:
****************************************************************************************
label本身并不平滑。为了我们分类器的学习更加准确,我们会首先把label给“平滑化”(正态化)
这一步大部分同学会miss掉,导致自己的结果总是达不到一定标准。
这里我们使用最有逼格的log1p, 也就是 log(x+1),避免了复值的问题。
记住哟,如果我们这里把数据都给平滑化了,那么最后算结果的时候,要记得把预测到的平滑数据给变回去。
按照“怎么来的怎么去”原则,log1p()就需要expm1(); 同理,log()就需要exp(), ... etc.
类似『特征工程』。就是把不方便处理或者不unify的数据给统一了。
正确化变量属性
首先,我们注意到,MSSubClass 的值其实应该是一个category,
但是Pandas是不会懂这些事儿的。使用DF的时候,这类数字符号会被默认记成数字。
这种东西就很有误导性,我们需要把它变回成string
In [13]:
all_df['MSSubClass'].dtypes
Out[13]:
dtype('int64')
In [14]:
all_df['MSSubClass'] = all_df['MSSubClass'].astype(str)
变成str以后,做个统计,就很清楚了
In [15]:
all_df['MSSubClass'].value_counts()
Out[15]:
20 1079
60 575
50 287
120 182
30 139
70 128
160 128
80 118
90 109
190 61
85 48
75 23
45 18
180 17
40 6
150 1
Name: MSSubClass, dtype: int64
把category的变量转变成numerical表达形式
当我们用numerical来表达categorical的时候,要注意,数字本身有大小的含义,所以乱用数字会给之后的模型学习带来麻烦。于是我们可以用One-Hot的方法来表达category。
pandas自带的get_dummies方法,可以帮你一键做到One-Hot。
In [16]:
pd.get_dummies(all_df['MSSubClass'], prefix='MSSubClass').head()
Out[16]:
MSSubClass_120 | MSSubClass_150 | MSSubClass_160 | MSSubClass_180 | MSSubClass_190 | MSSubClass_20 | MSSubClass_30 | MSSubClass_40 | MSSubClass_45 | MSSubClass_50 | MSSubClass_60 | MSSubClass_70 | MSSubClass_75 | MSSubClass_80 | MSSubClass_85 | MSSubClass_90 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Id | ||||||||||||||||
1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 |
5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
此刻MSSubClass被我们分成了12个column,每一个代表一个category。是就是1,不是就是0。
同理,我们把所有的category数据,都给One-Hot了
处理好numerical变量
就算是numerical的变量,也还会有一些小问题。
比如,有一些数据是缺失的:
In [18]:
all_dummy_df.isnull().sum().sort_values(ascending=False).head(10)
Out[18]:
LotFrontage 486
GarageYrBlt 159
MasVnrArea 23
BsmtHalfBath 2
BsmtFullBath 2
BsmtFinSF2 1
GarageCars 1
TotalBsmtSF 1
BsmtUnfSF 1
GarageArea 1
dtype: int64
可以看到,缺失最多的column是LotFrontage
处理这些缺失的信息,得靠好好审题。一般来说,数据集的描述里会写的很清楚,这些缺失都代表着什么。当然,如果实在没有的话,也只能靠自己的『想当然』。。
在这里,我们用平均值来填满这些空缺。
标准化numerical数据
这一步并不是必要,但是得看你想要用的分类器是什么。一般来说,regression的分类器都比较傲娇,最好是把源数据给放在一个标准分布内。不要让数据间的差距太大。
这里,我们当然不需要把One-Hot的那些0/1数据给标准化。我们的目标应该是那些本来就是numerical的数据:
先来看看 哪些是numerical的:
In [22]:
numeric_cols = all_df.columns[all_df.dtypes != 'object']
numeric_cols
Out[22]:
Index(['LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt',
'YearRemodAdd', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF',
'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF', 'GrLivArea',
'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr',
'KitchenAbvGr', 'TotRmsAbvGrd', 'Fireplaces', 'GarageYrBlt',
'GarageCars', 'GarageArea', 'WoodDeckSF', 'OpenPorchSF',
'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal',
'MoSold', 'YrSold'],
dtype='object')
计算标准分布:(X-X')/s
让我们的数据点更平滑,更便于计算。
注意:我们这里也是可以继续使用Log的,我只是给大家展示一下多种“使数据平滑”的办法。