读这篇文章之前,建议阅读如下文章:
Ubuntu16.04上编译OpenJDK8源代码
调试HotSpot源代码
HotSpot项目结构
HotSpot的启动过程
HotSpot二分模型(1)
HotSpot的类模型(2)
上一篇 HotSpot的类模型(2) 介绍了类模型的基础类Klass的重要属性及方法,这一篇介绍一下InstanceKlass及InstanceKlass的子类。
每个InstanceKlass对象表示一个具体的Java类(这里的Java类不包括Java数组)。InstanceKlass类及重要属性的定义如下:
class InstanceKlass: public Klass {
...
protected:
// Annotations for this class
Annotations* _annotations;
// Array classes holding elements of this class.
Klass* _array_klasses;
// Constant pool for this class.
ConstantPool* _constants;
// The InnerClasses attribute and EnclosingMethod attribute. The
// _inner_classes is an array of shorts. If the class has InnerClasses
// attribute, then the _inner_classes array begins with 4-tuples of shorts
// [inner_class_info_index, outer_class_info_index,
// inner_name_index, inner_class_access_flags] for the InnerClasses
// attribute. If the EnclosingMethod attribute exists, it occupies the
// last two shorts [class_index, method_index] of the array. If only
// the InnerClasses attribute exists, the _inner_classes array length is
// number_of_inner_classes * 4. If the class has both InnerClasses
// and EnclosingMethod attributes the _inner_classes array length is
// number_of_inner_classes * 4 + enclosing_method_attribute_size.
Array* _inner_classes;
// Array name derived from this class which needs unreferencing
// if this class is unloaded.
Symbol* _array_name;
// Number of heapOopSize words used by non-static fields in this klass
// (including inherited fields but after header_size()).
int _nonstatic_field_size;
int _static_field_size; // number words used by static fields (oop and non-oop) in this klass
// Constant pool index to the utf8 entry of the Generic signature,
// or 0 if none.
u2 _generic_signature_index;
// Constant pool index to the utf8 entry for the name of source file
// containing this klass, 0 if not specified.
u2 _source_file_name_index;
u2 _static_oop_field_count;// number of static oop fields in this klass
u2 _java_fields_count; // The number of declared Java fields
int _nonstatic_oop_map_size;// size in words of nonstatic oop map blocks
u2 _minor_version; // minor version number of class file
u2 _major_version; // major version number of class file
Thread* _init_thread; // Pointer to current thread doing initialization (to handle recusive initialization)
int _vtable_len; // length of Java vtable (in words)
int _itable_len; // length of Java itable (in words)
OopMapCache* volatile _oop_map_cache; // OopMapCache for all methods in the klass (allocated lazily)
JNIid* _jni_ids; // First JNI identifier for static fields in this class
jmethodID* _methods_jmethod_ids; // jmethodIDs corresponding to method_idnum, or NULL if none
nmethodBucket* _dependencies; // list of dependent nmethods
nmethod* _osr_nmethods_head; // Head of list of on-stack replacement nmethods for this class
// Class states are defined as ClassState (see above).
// Place the _init_state here to utilize the unused 2-byte after
// _idnum_allocated_count.
u1 _init_state; // state of class
u1 _reference_type; // reference type
// Method array.
Array* _methods;
// Default Method Array, concrete methods inherited from interfaces
Array* _default_methods;
// Interface (Klass*s) this class declares locally to implement.
Array* _local_interfaces;
// Interface (Klass*s) this class implements transitively.
Array* _transitive_interfaces;
// Int array containing the vtable_indices for default_methods
// offset matches _default_methods offset
Array* _default_vtable_indices;
// Instance and static variable information, starts with 6-tuples of shorts
// [access, name index, sig index, initval index, low_offset, high_offset]
// for all fields, followed by the generic signature data at the end of
// the array. Only fields with generic signature attributes have the generic
// signature data set in the array. The fields array looks like following:
//
// f1: [access, name index, sig index, initial value index, low_offset, high_offset]
// f2: [access, name index, sig index, initial value index, low_offset, high_offset]
// ...
// fn: [access, name index, sig index, initial value index, low_offset, high_offset]
// [generic signature index]
// [generic signature index]
// ...
Array* _fields;
// embedded Java vtable follows here
// embedded Java itables follows here
// embedded static fields follows here
// embedded nonstatic oop-map blocks follows here
// embedded implementor of this interface follows here
// The embedded implementor only exists if the current klass is an
// iterface. The possible values of the implementor fall into following
// three cases:
// NULL: no implementor.
// A Klass* that's not itself: one implementor.
// Itsef: more than one implementors.
// embedded host klass follows here
// The embedded host klass only exists in an anonymous class for
// dynamic language support (JSR 292 enabled). The host class grants
// its access privileges to this class also. The host class is either
// named, or a previously loaded anonymous class. A non-anonymous class
// or an anonymous class loaded through normal classloading does not
// have this embedded field.
...
}
重要属性的介绍如下表所示。
字段名 | 作用 |
_annotations | Annotations类型的指针,保存该类使用的所有注解 |
_array_klasses | 数组元素为该类的数组Klass指针,例如ObjArrayKlass是对象数组且元素类型为Object, 那么表示Object类的InstanceKlass对象的_array_klasses就是指向ObjArrayKlass的指针 |
_array_name | 以该类为数组元素的数组的名字,如"[Ljava/lang/Object;" |
_constants | ConstantPool类型的指针,用来保存类的常量池信息 |
_inner_classes | 用一个jushort数组保存当前类的InnerClasses属性和EnclosingMethod属性 |
_nonstatic_field_size | 非静态字段需要占用的内存大小 ,以字为单位 |
_static_field_size | 静态字段需要占用的内存大小 ,以字为单位 |
_generic_signature_index | 保存此类的Generic signature在常量池中的索引 |
_source_file_name_index | 保存此类的源文件名在常量池中索引 |
_static_oop_field_count | 此类包含的静态引用类型字段的数量 |
_java_fields_count | 字段总数量 |
_nonstatic_oop_map_size | 非静态的oop map block的内存大小,以字为单位 |
_minor_version | 类的次版本号 |
_major_version | 类的主版本号 |
_init_thread | 执行此类初始化的Thread指针 |
_vtable_len | Java虚函数表(vtable)所占用的内存大小,以字为单位 |
_itable_len | Java接口函数表(itable)所占用的内存大小,以字为单位 |
_oop_map_cache | OopMapCache指针,该类的所有方法的OopMapCache |
_jni_ids/_methods_jmethod_ids | JNIid指针与jmethodID指针,这2个指针对于JNI方法操作属性和方法非常重要,在介绍JNI时会详细介绍。 |
_dependencies | nmethodBucket指针,依赖的本地方法,以根据其_next属性获取下一个nmethod |
_osr_nmethods_head | 栈上替换的本地方法链表的头元素 |
_init_state | 表示类的状态,为枚举类型ClassState,定义了如下常量值:
|
_reference_type | 引用类型 |
_methods | 保存方法的指针数组 |
_default_methods | 保存方法的指针数组,从接口继承的默认方法 |
_local_interfaces | 保存接口的指针数组,直接实现的接口Klass |
_transitive_interfaces | 保存接口的指针数组,包含_local_interfaces和通过继承间接实现的接口 |
_default_vtable_indices | 默认方法在虚函数表中的索引 |
_fields | 类的字段属性,每个字段的6个属性access,、name index、sig index、initial value index、low_offset、high_offset组成一个元组, access表示访问控制属性,根据name index可以获取属性名,根据initial value index可以获取初始值,根据low_offset与 high_offset可以获取该属性在内存中的偏移量。另外保存完所有属性之后还可能会保存泛型签名信息。 |
有了InstanceKlass与Klass中定义的这些属性足够用来保存Java类元信息。在后续的类解析中会看到对相关变量的属性填充操作。除了保存类元信息外,此类还有另外一个重要的功能,即支持方法分派,主要是通过Java虚方法表和Java接口函数表来完成的,不过C++并不像Java一样,保存信息时非要在类中定义出相关属性,C++只是在分配内存时为要存储的信息分配好特定的内存,然后直接通过内存偏移来操作即可。
接下来几个属性是没有对应的属性名,只能通过指针和偏移量的方式访问:
HotSpot在解析一个类时会调用InstanceKlass::allocate_instance_klass()方法分配内存,而分配多大的内存则是通过调用InstanceKlass::size()计算出来的,调用语句如下:
int size = InstanceKlass::size(vtable_len,
itable_len,
nonstatic_oop_map_size,
isinterf,
is_anonymous);
调用的size()方法的实现如下:
static int size(int vtable_length,
int itable_length,
int nonstatic_oop_map_size,
bool is_interface,
bool is_anonymous
){
return align_object_size(header_size() + // header_size()为55
align_object_offset(vtable_length) +
align_object_offset(itable_length) +
(
(is_interface || is_anonymous) ?
align_object_offset(nonstatic_oop_map_size) :
nonstatic_oop_map_size
) +
(
is_interface ? (int)sizeof(Klass*)/HeapWordSize : 0
) +
(
is_anonymous ? (int)sizeof(Klass*)/HeapWordSize : 0)
);
}
可以看到除了会为类中本身的属性分配内存,也会为vtable与itable等分配内存。调用的header_size()方法就是计算此类的对象所占用的内存大小,实现如下:
// Sizing (in words)
static int header_size(){
return align_object_offset(sizeof(InstanceKlass)/HeapWordSize); // 以HeapWordSize为单位,64位一个字为8字节,所以值为8
}
调用的align_object_offset()方法是进行内存对齐,这是一块非常重要的C++知识点,后面会专门进行讲解。
InstanceKlass共有3个直接子类,这3个子类用来表示一些特殊的类,下面简单介绍一下这3个子类:
(1)InstanceRefKlass
java/lang/ref/Reference的子类需要使用InstanceRefKlass类来表示,因为这些类需要垃圾回收器特殊处理 ,在后续讲解强引用、弱引用、虚引用以及幽灵引用时在详细介绍。
(2)InstanceMirrorKlass类
用于表示特殊的java.lang.Class类,我们需要分清相关类的表示方法,如下图所示。
java.lang.Class对象是通过对应的Oop对象来保存类的静态属性,因此他们的实例大小不同,需要特殊的方式来计算他们的大小以及属性遍历。
Klass的属性_java_mirror就指向保存该类静态字段的Oop对象,可通过该属性访问类的静态字段。 Oop是HotSpot的对象表示模型,在后面会详细介绍。
(3)InstanceClassLoaderKlass类
没有添加新的字段,增加了新的oop遍历方法,主要用于类加载器依赖遍历使用。
创建InstanceKlass实例会调用InstanceKlass::allocate_instance_klass()方法。在创建时,会涉及到C++new运算符的重载,通过重载new运算符来分配对象的内存空间,也就是调用InstanceKlass::size()方法得到的大小,然后再调用对应类的构造函数初始化相应的属性。方法的实现如下:
InstanceKlass* InstanceKlass::allocate_instance_klass(
ClassLoaderData* loader_data,
int vtable_len,
int itable_len,
int static_field_size,
int nonstatic_oop_map_size,
ReferenceType rt,
AccessFlags access_flags,
Symbol* name,
Klass* super_klass,
bool is_anonymous,
TRAPS) {
bool isinterf = access_flags.is_interface();
int size = InstanceKlass::size(vtable_len,
itable_len,
nonstatic_oop_map_size,
isinterf,
is_anonymous);
// Allocation
InstanceKlass* ik;
///////////////////////////////////////////////////////////////////////
if (rt == REF_NONE) {
if (name == vmSymbols::java_lang_Class()) {
ik = new (loader_data, size, THREAD) InstanceMirrorKlass(
vtable_len,
itable_len,
static_field_size,
nonstatic_oop_map_size,
rt,
access_flags, is_anonymous);
} else if (
name == vmSymbols::java_lang_ClassLoader() ||
(
SystemDictionary::ClassLoader_klass_loaded() &&
super_klass != NULL &&
super_klass->is_subtype_of(SystemDictionary::ClassLoader_klass()) // ClassLoader_klass为java_lang_ClassLoader
)
){
ik = new (loader_data, size, THREAD) InstanceClassLoaderKlass(
vtable_len,
itable_len,
static_field_size,
nonstatic_oop_map_size,
rt,
access_flags, is_anonymous);
} else {
// normal class
ik = new (loader_data, size, THREAD) InstanceKlass(
vtable_len, itable_len,
static_field_size,
nonstatic_oop_map_size,
rt,
access_flags, is_anonymous);
}
}
///////////////////////////////////////////////////////////////////////
else {
// reference klass
ik = new (loader_data, size, THREAD) InstanceRefKlass(
vtable_len, itable_len,
static_field_size,
nonstatic_oop_map_size,
rt,
access_flags, is_anonymous);
}
///////////////////////////////////////////////////////////////////////
// 添加所有类型到我们内部类加载器列表中,包括在根加载器中的类
// Add all classes to our internal class loader list here,
// including classes in the bootstrap (NULL) class loader.
// loader_data的类型为ClassLoaderData*,通过ClassLoaderData中的_klasses保持通过InstanceKlass._next_link属性保持的列表
loader_data->add_class(ik);
return ik;
}
方法的实现比较简单,当rt等于REF_NONE时,也就是为非Reference类型时,会根据类名创建对应C++类的对象。Class类创建InstanceMirrorKlass、ClassLoader类或ClassLoader的子类创建InstanceClassLoaderKlass类、普通类通过InstanceKlass来表示。当rt不为REF_NONE时,会创建InstanceRefKlass对象。REF_NONE枚举常量的定义如下:
// ReferenceType is used to distinguish between java/lang/ref/Reference subclasses
enum ReferenceType {
REF_NONE, // Regular class
REF_OTHER, // Subclass of java/lang/ref/Reference, but not subclass of one of the classes below
REF_SOFT, // Subclass of java/lang/ref/SoftReference
REF_WEAK, // Subclass of java/lang/ref/WeakReference
REF_FINAL, // Subclass of java/lang/ref/FinalReference
REF_PHANTOM // Subclass of java/lang/ref/PhantomReference
};
可以看到,所有的Reference及子类都会用InstanceRefKlass来表示。当无法判断到底是哪个子类时,会将Reference设置为REF_OTHER。
关注个人博客www.classloading.com或公众号,有HotSpot源码剖析系列文章!