Catalan数的通项公式(母函数推导)

首先
h n = ∑ i h i h n − i − 1 h_n=\sum_{i}h_ih_{n-i-1} hn=ihihni1
写出 h h h 的母函数 H ( x ) H(x) H(x)
那么
H ( x ) = H 2 ( x ) x + 1 , H ( x ) = 1 − 1 − 4 x 2 x H(x)=H^2(x)x+1,H(x)=\frac{1-\sqrt{1-4x}}{2x} H(x)=H2(x)x+1,H(x)=2x114x
(解二元一次方程取符号时候要看是否收敛)

引入牛顿二项式
( x + y ) α = ∑ k = 0 ∞ ( α k ) x α − k y k (x+y)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k}x^{\alpha-k}y^{k} (x+y)α=k=0(kα)xαkyk
其中
( α k ) = ∏ i = 1 k α − i + 1 i \binom{\alpha}{k}=\prod_{i=1}^{k}\frac{\alpha - i + 1}{i} (kα)=i=1kiαi+1
展开可以得到
H ( x ) = 1 − ∑ k = 0 ∞ ( 1 2 k ) ( − 4 x ) k 2 x H(x)=\frac{1-\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k}(-4x)^k}{2x} H(x)=2x1k=0(k21)(4x)k
= − 1 2 ∑ k = 0 ∞ ( 1 2 k + 1 ) ( − 4 ) k + 1 x k =-\frac{1}{2}\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k+1}(-4)^{k+1}x^k =21k=0(k+121)(4)k+1xk
= 2 ∑ k = 0 ∞ ( 1 2 k + 1 ) ( − 4 x ) k =2\sum_{k=0}^{\infty}\binom{\frac{1}{2}}{k+1}(-4x)^k =2k=0(k+121)(4x)k
那么
h n = 2 ( 1 2 n + 1 ) ( − 4 x ) n = 2 ∏ i = 0 n ( 1 2 − i ) ( n + 1 ) ! ( − 1 ) n 2 2 n h_n=2\binom{\frac{1}{2}}{n+1}(-4x)^n=2\frac{\prod_{i=0}^{n}(\frac{1}{2}-i)}{(n+1)!}(-1)^n2^{2n} hn=2(n+121)(4x)n=2(n+1)!i=0n(21i)(1)n22n
= ∏ i = 0 n ( 1 − 2 i ) ( n + 1 ) ! ( − 1 ) n 2 n = ∏ i = 1 n ( 2 i − 1 ) ( n + 1 ) ! 2 n = ( 2 n − 1 ) ! ! ( n + 1 ) ! 2 n =\frac{\prod_{i=0}^{n}(1-2i)}{(n+1)!}(-1)^n2^n=\frac{\prod_{i=1}^{n}(2i-1)}{(n+1)!}2^n=\frac{(2n-1)!!}{(n+1)!}2^n =(n+1)!i=0n(12i)(1)n2n=(n+1)!i=1n(2i1)2n=(n+1)!(2n1)!!2n

( 2 n − 1 ) ! ! + 2 n n ! = ( 2 n ) ! (2n-1)!!+2^nn!=(2n)! (2n1)!!+2nn!=(2n)!
所以
h n = ( 2 n ) ! n ! ( n + 1 ) ! = 1 n + 1 ( 2 n n ) h_n=\frac{(2n)!}{n!(n+1)!}=\frac{1}{n+1}\binom{2n}{n} hn=n!(n+1)!(2n)!=n+11(n2n)
完美解决

你可能感兴趣的:(模板\算法\知识点总结,FFT\NTT,就是数学(计数等))