一步步带你看懂orbslam2源码--单应矩阵/基础矩阵,求解R,t(四)

一步步带你看懂orbslam2源码--单应矩阵/基础矩阵,求解R,t(四)_第1张图片

ORB-SLAM2目录:

   一步步带你看懂orbslam2源码–总体框架(一)
   一步步带你看懂orbslam2源码–orb特征点提取(二)
   一步步带你看懂orbslam2源码–单目初始化(三)
   一步步带你看懂orbslam2源码–单应矩阵/基础矩阵,求解R,t(四)
   一步步带你看懂orbslam2源码–单目初始化(五)


回顾:
  上一节我们主要讲解了对极约束的原理以及F矩阵的求解,单应矩阵的原理以及单应矩阵的求解,RANSAC随机采样一致性算法,阈值选择原理,score计算方式,模型选择策略,并且对创建Frame剩余的部分源码进行补充说明.本章节主要将讲解如何从单应矩阵和基础矩阵中分解出相机位姿和三维空间点坐标,这一部分东北大学的吴博在"ORB-SLAM代码详细解读"PPT中已经进行了详细推导,笔者这次的主要目的是根据吴博的推导过程再讲解一遍,并且完善其中的计算过程,最后还给出了其在orbslam2源码中的实现方式.


理论环节

  由上一讲中,我们已经知道单应矩阵 H H H的形式:
p 2 = H 21 p 1 = K ( R + t n T d ) K − 1 p 1 (1) \begin{aligned} p_2&=H_{21}p_1\\ &=K(R+\frac{tn^T}{d})K^{-1}p_1 \end{aligned}\tag{1} p2=H21p1=K(R+dtnT)K1p1(1)
问题转换为:我们如何从 H 21 H_{21} H21中分解出 R R R t t t,这也是本章节的主要内容,可以将式(1)做进一步变换:
K − 1 H 21 K = R + t n T d (2) \begin{aligned} K^{-1}H_{21}K& &=R+\frac{tn^T}{d} \end{aligned}\tag{2} K1H21K=R+dtnT(2)
A = d R + t n T A=dR+tn^T A=dR+tnT,对 A A A进行奇异值分解: A = U Λ V T A=U\Lambda V^T A=UΛVT,则
Λ = U T A V = d U T R V + ( U T t ) ( V T n ) T (3) \Lambda =U^TAV=dU^TRV+(U^Tt)(V^Tn)^T\tag{3} Λ=UTAV=dUTRV+(UTt)(VTn)T(3)
因为 U U U V V V为单位正交矩阵,所以考虑 s = d e t U d e t V , s 2 = 1 s=detUdetV,s^2=1 s=detUdetV,s2=1
将式(3)变换为:
Λ = s 2 d U T R V + ( U T t ) ( V T n ) T = ( s d ) ( s U T R V ) + ( U T t ) ( V T n ) T (4) \Lambda =s^2dU^TRV+(U^Tt)(V^Tn)^T=(sd)(sU^TRV)+(U^Tt)(V^Tn)^T\tag{4} Λ=s2dUTRV+(UTt)(VTn)T=(sd)(sUTRV)+(UTt)(VTn)T(4)
R ′ = s U T R V , t ′ = U T t , n ′ = V T n , d ′ = s d R^{'}=sU^TRV,t^{'}=U^Tt,n^{'}=V^Tn,d^{'}=sd R=sUTRV,t=UTt,n=VTn,d=sd
则式(4)变为:
Λ = d ′ R ′ + t ′ n ′ T (5) \Lambda =d^{'}R^{'}+t^{'}n^{'T}\tag{5} Λ=dR+tnT(5)
于是,原问题转换为:如何从式子(5)中的 Λ \Lambda Λ分解出 R ′ R^{'} R t ′ t^{'} t,从而可以得到:
{ R = 1 s U R ′ V T t = U t ′ (6) \left\{\begin{aligned} R&=\frac{1}{s}UR^{'}V^T\\ t&=Ut^{'} \end{aligned}\right.\tag{6} Rt=s1URVT=Ut(6)
注意 s = ± 1 s=±1 s=±1,这是正交矩阵的性质,引入 s s s是为了说明 R ′ R^{'} R R R R, d ′ d^{'} d d d d存在符号取反的可能. 进一步的:
Λ = [ d 1 0 0 0 d 2 0 0 0 d 3 ] = d ′ R ′ + t ′ n ′ T (7) \Lambda = \begin{bmatrix} d_1 &0 &0\\ 0 &d_2 & 0\\ 0 &0 &d_3 \end{bmatrix}=d^{'}R^{'}+t^{'}n^{'T}\tag{7} Λ=d1000d2000d3=dR+tnT(7)
取:
e 1 = [ 1 0 0 ] , e 2 = [ 0 1 0 ] , e 3 = [ 0 0 1 ] e_1=\begin{bmatrix} 1\\0\\0 \end{bmatrix}, e_2=\begin{bmatrix} 0\\1\\0 \end{bmatrix}, e_3=\begin{bmatrix} 0\\0\\1 \end{bmatrix} e1=100,e2=010,e3=001
则:
n ′ = e 1 = [ x 1 0 0 ] + [ 0 x 2 0 ] + [ 0 0 x 3 ] = x 1 e 1 + x 2 e 2 + x 3 e 3 (8) n^{'}= e_1=\begin{bmatrix} x_1\\0\\0 \end{bmatrix}+ \begin{bmatrix} 0\\x_2\\0 \end{bmatrix}+ \begin{bmatrix} 0\\0\\x_3 \end{bmatrix}= x_1e_1+x_2e_2+x_3e_3\tag{8} n=e1=x100+0x20+00x3=x1e1+x2e2+x3e3(8)
注意到,由于 n ′ n^{'} n是平面的单位法向量,所以 x 1 2 + x 2 2 + x 3 2 = 1 x_1^2+x_2^2+x_3^2=1 x12+x22+x32=1

所以式(7)变为:
[ d 1 e 1 d 2 e 2 d 3 e 3 ] = [ d ′ R ′ e 1 d ′ R ′ e 2 d ′ R ′ e 3 ] + [ t ′ x 1 t ′ x 2 t ′ x 2 ] (9) \begin{bmatrix} d_1e_1 & d_2e_2 &d_3e_3 \end{bmatrix}= \begin{bmatrix} d^{'}R^{'}e_1 & d^{'}R^{'}e_2 &d^{'}R^{'}e_3 \end{bmatrix}+ \begin{bmatrix} t^{'}x_1 & t^{'}x_2 &t^{'}x_2 \end{bmatrix}\tag{9} [d1e1d2e2d3e3]=[dRe1dRe2dRe3]+[tx1tx2tx2](9)
式(9)也可以等价为:
{ d 1 e 1 = d ′ R ′ e 1 + t ′ x 1 − − ( 10 ) d 2 e 2 = d ′ R ′ e 2 + t ′ x 2 − − ( 11 ) d 3 e 3 = d ′ R ′ e 3 + t ′ x 3 − − ( 12 ) \left\{\begin{aligned} d_1e_1=d^{'}R^{'}e_1+t^{'}x_1--(10)\\ d_2e_2=d^{'}R^{'}e_2+t^{'}x_2--(11)\\ d_3e_3=d^{'}R^{'}e_3+t^{'}x_3--(12)\\ \end{aligned}\right. d1e1=dRe1+tx1(10)d2e2=dRe2+tx2(11)d3e3=dRe3+tx3(12)
将式(10)两边同时乘以 x 2 x_2 x2,式(11)两边同时乘以 x 1 x_1 x1可得:
{ d 1 x 2 e 1 = d ′ R ′ x 2 e 1 + t ′ x 1 x 2 d 2 x 1 e 2 = d ′ R ′ x 1 e 2 + t ′ x 1 x 2 \left\{\begin{aligned} d_1x_2e_1=d^{'}R^{'}x_2e_1+t^{'}x_1x_2\\ d_2x_1e_2=d^{'}R^{'}x_1e_2+t^{'}x_1x_2 \end{aligned} \right. {d1x2e1=dRx2e1+tx1x2d2x1e2=dRx1e2+tx1x2
由上式 − - 下式可得: d ′ R ′ ( x 2 e 1 − x 1 e 2 ) = d 1 x 2 e 1 − d 2 x 1 e 2 d^{'}R^{'}(x_2e_1-x_1e_2)=d_1x_2e_1-d_2x_1e_2 dR(x2e1x1e2)=d1x2e1d2x1e2从而消去 t ′ t^{'} t,以此类推可得:
{ d ′ R ′ ( x 2 e 1 − x 1 e 2 ) = d 1 x 2 e 1 − d 2 x 1 e 2 d ′ R ′ ( x 3 e 2 − x 2 e 3 ) = d 2 x 3 e 2 − d 3 x 2 e 3 d ′ R ′ ( x 1 e 3 − x 3 e 1 ) = d 3 x 1 e 3 − d 1 x 3 e 1 (13) \left\{\begin{aligned} d^{'}R^{'}(x_2e_1-x_1e_2)=d_1x_2e_1-d_2x_1e_2\\ d^{'}R^{'}(x_3e_2-x_2e_3)=d_2x_3e_2-d_3x_2e_3\\ d^{'}R^{'}(x_1e_3-x_3e_1)=d_3x_1e_3-d_1x_3e_1\\ \end{aligned}\right.\tag{13} dR(x2e1x1e2)=d1x2e1d2x1e2dR(x3e2x2e3)=d2x3e2d3x2e3dR(x1e3x3e1)=d3x1e3d1x3e1(13)
由于旋转矩阵具有保范性,即: ∥ R ′ X ∥ = ∥ X ∥ \begin{Vmatrix}R^{'}X\end{Vmatrix}=\begin{Vmatrix}X\end{Vmatrix} RX=X
对式(13)中的第一式左右两边取范数,可得:
∥ d ′ ( x 2 e 1 − x 1 e 2 ) ∥ = ∥ d ′ ( d 1 x 2 e 1 − d 2 x 1 e 2 ) ∥ \begin{Vmatrix}d^{'}(x_2e_1-x_1e_2)\end{Vmatrix}= \begin{Vmatrix}d^{'}(d_1x_2e_1-d_2x_1e_2)\end{Vmatrix} d(x2e1x1e2)=d(d1x2e1d2x1e2)进一步有:
( d ′ x 2 ) 2 + ( d ′ x 1 ) 2 = ( d 1 x 2 ) 2 + ( d 2 x 1 ) 2 (d^{'}x_2)^2+(d^{'}x_1)^2=(d_1x_2)^2+(d_2x_1)^2 (dx2)2+(dx1)2=(d1x2)2+(d2x1)2
( d ′ 2 − d 2 2 ) x 1 2 + ( d ′ 2 − d 1 2 ) x 2 2 = 0 (d^{'2}-d_2^2)x_1^2+(d^{'2}-d_1^2)x_2^2=0 (d2d22)x12+(d2d12)x22=0
以此类推,可得:
{ ( d ′ 2 − d 2 2 ) x 1 2 + ( d ′ 2 − d 1 2 ) x 2 2 = 0 ( d ′ 2 − d 3 2 ) x 2 2 + ( d ′ 2 − d 2 2 ) x 3 2 = 0 ( d ′ 2 − d 1 2 ) x 3 2 + ( d ′ 2 − d 3 2 ) x 1 2 = 0 (14) \left\{\begin{aligned} (d^{'2}-d_2^2)x_1^2+(d^{'2}-d_1^2)x_2^2=0\\ (d^{'2}-d_3^2)x_2^2+(d^{'2}-d_2^2)x_3^2=0\\ (d^{'2}-d_1^2)x_3^2+(d^{'2}-d_3^2)x_1^2=0 \end{aligned}\right.\tag{14} (d2d22)x12+(d2d12)x22=0(d2d32)x22+(d2d22)x32=0(d2d12)x32+(d2d32)x12=0(14)
令:
{ d ′ 2 − d 1 2 = a d ′ 2 − d 2 2 = b d ′ 2 − d 3 2 = c \left\{\begin{aligned} d^{'2}-d_1^{2}=a\\ d^{'2}-d_2^{2}=b\\ d^{'2}-d_3^{2}=c\\ \end{aligned}\right. d2d12=ad2d22=bd2d32=c
则式子(14)可以简写为:
[ b a 0 0 c b c 0 a ] [ x 1 2 x 2 2 x 3 2 ] = 0 \begin{bmatrix} b &a &0\\ 0 &c &b\\ c &0 &a \end{bmatrix} \begin{bmatrix} x_1^{2}\\ x_2^{2}\\ x_3^{2}\\ \end{bmatrix}=0 b0cac00bax12x22x32=0
由因为该方程必有非零解,所以:
∣ b a 0 0 c b c 0 b ∣ = 0 \begin{vmatrix} b &a &0\\ 0 &c &b\\ c &0 &b\\ \end{vmatrix}=0 b0cac00bb=0
则:
a b c = 0 abc=0 abc=0

( d ′ 2 − d 1 2 ) ( d ′ 2 − d 2 2 ) ( d ′ 2 − d 3 2 ) = 0 (15) (d^{'2}-d_1^2)(d^{'2}-d_2^2)(d^{'2}-d_3^2)=0\tag{15} (d2d12)(d2d22)(d2d32)=0(15)
因为: d 1 ≥ d 2 ≥ d 3 d_1≥d_2≥d_3 d1d2d3,所以对于式子(15)可以分为以下三种情况:
{ d 1 ≠ d 2 ≠ d 3 d 1 = d 2 ≠ d 3 o r d 1 ≠ d 2 = d 3 d 1 = d 2 = d 3 \left\{\begin{aligned} d_1&≠d_2≠d_3\\ d_1&=d_2≠d_3ord_1≠d_2=d_3\\ d_1&=d_2=d_3 \end{aligned}\right. d1d1d1=d2=d3d2=d3ord1=d2d3d2d3
  因此我们必须找到解 d ′ d^{'} d同时满足以上三种情况,结合式子(14)分析,这三种情况均可以得到: d ′ = ± d 2 d^{'}=±d_2 d=±d2,对于其他解均能找到反例.现对第一种情况使用反例证明:

如果: d ′ = ± d 1 d^{'}=±d_1 d=±d1 d ′ = ± d 3 d^{'}=±d_3 d=±d3,根据式子(14)可得:
{ x 1 = 0 ( d 1 2 − d 3 2 ) x 2 2 + ( d 1 2 − d 2 2 ) x 3 2 = 0 d 1 > d 2 > d 3 \left\{\begin{aligned} &x_1=0\\ &(d_1^{2}-d_3^{2})x_2^{2}+(d_1^{2}-d_2^{2})x_3^{2}=0\\ &d_1>d_2>d_3 \end{aligned}\right. x1=0(d12d32)x22+(d12d22)x32=0d1>d2>d3
可以推出: x 1 = x 2 = x 3 = 0 x_1=x_2=x_3=0 x1=x2=x3=0 x 1 2 + x 2 2 + x 3 2 = 1 x_1^2+x_2^2+x_3^2=1 x12+x22+x32=1相矛盾.

故问题转换为:求 d ′ = ± d 2 d^{'}=±d_2 d=±d2情况下,对应的 R ′ R^{'} R t ′ t^{'} t.即:
d ′ = d 2 > 0 { d 1 ≠ d 2 ≠ d 3 − − − − − − − − ( 16 ) d 1 = d 2 ≠ d 3 o r d 1 ≠ d 2 = d 3 − − − − − − − − ( 17 ) d 1 = d 2 = d 3 − − − − − − − − ( 18 ) d^{'}=d_2>0 \left\{\begin{aligned} d_1&≠d_2≠d_3--------(16)\\ d_1&=d_2≠d_3ord_1≠d_2=d_3--------(17)\\ d_1&=d_2=d_3--------(18) \end{aligned}\right. d=d2>0d1d1d1=d2=d3(16)d2=d3ord1=d2d3(17)d2d3(18)
d ′ = − d 2 < 0 { d 1 ≠ d 2 ≠ d 3 − − − − − − − − ( 19 ) d 1 = d 2 ≠ d 3 o r d 1 ≠ d 2 = d 3 − − − − − − − − ( 20 ) d 1 = d 2 = d 3 − − − − − − − − ( 21 ) d^{'}=-d_2<0 \left\{\begin{aligned} d_1&≠d_2≠d_3--------(19)\\ d_1&=d_2≠d_3ord_1≠d_2=d_3--------(20)\\ d_1&=d_2=d_3--------(21) \end{aligned}\right. d=d2<0d1d1d1=d2=d3(19)d2=d3ord1=d2d3(20)d2d3(21)
情况一(针对式子(16)):

d ′ = d 2 d^{'}=d_2 d=d2代入式子(14)可得:
{ 0 ∗ x 1 2 + ( d 2 2 − d 1 2 ) x 2 2 = 0 ( d 2 2 − d 3 2 ) x 2 2 + 0 ∗ x 3 2 = 0 ( d 2 2 − d 1 2 ) x 3 2 + ( d 2 2 − d 3 2 ) x 1 2 = 0 − − − − − − − ( 22 ) \left\{\begin{aligned} &0*x_1^2+(d_2^{2}-d_1^2)x_2^2=0\\ &(d_2^{2}-d_3^2)x_2^2+0*x_3^2=0\\ &(d_2^{2}-d_1^2)x_3^2+(d_2^{2}-d_3^2)x_1^2=0-------(22) \end{aligned}\right. 0x12+(d22d12)x22=0(d22d32)x22+0x32=0(d22d12)x32+(d22d32)x12=0(22)
可得: x 2 = 0 , x 1 2 + x 3 2 = 1 x_2=0,x_1^2+x_3^2=1 x2=0,x12+x32=1

式子(22)变成: ( d 2 2 − d 1 2 ) x 3 2 + ( d 2 2 − d 3 2 ) ( 1 − x 3 2 ) = 0 (d_2^{2}-d_1^2)x_3^2+(d_2^{2}-d_3^2)(1-x_3^2)=0 (d22d12)x32+(d22d32)(1x32)=0

经过化简可得:
n ′ = { x 1 = ϵ 1 d 1 2 − d 2 2 d 1 2 − d 3 2 x 2 = 0 x 3 = ϵ 2 d 2 2 − d 3 2 d 1 2 − d 3 2 ϵ 1 a n d ϵ 2 = ± 1 (23) n^{'}= \left\{\begin{aligned} &x_1=\epsilon_1 \sqrt{\frac{d_1^{2}-d_2^{2}}{d_1^{2}-d_3^{2}}}\\ &x_2=0\\ &x_3=\epsilon_2 \sqrt{\frac{d_2^{2}-d_3^{2}}{d_1^{2}-d_3^{2}}}\\ &\epsilon_1 and \epsilon_2=±1 \end{aligned}\right.\tag{23} n=x1=ϵ1d12d32d12d22 x2=0x3=ϵ2d12d32d22d32 ϵ1andϵ2=±1(23)
n ′ n^{'} n代入式子(11)可得:
R ′ e 2 = e 2 R^{'}e_2=e_2 Re2=e2
该式子的含义为 e 2 e_2 e2向量经过旋转之后还是 e 2 e_2 e2向量,注意到 e 2 = [ 0 1 0 ] T e_2=\begin{bmatrix}0 &1 &0 \end{bmatrix}^T e2=[010]T,即y轴只能绕y轴旋转后,还是y轴本身,注意,此处定义顺时针旋转方向为正.
故:
R ′ = [ c o s θ 0 − s i n θ 0 1 0 s i n θ 0 c o s θ ] (24) R^{'}= \begin{bmatrix} cos\theta &0 & -sin\theta\\ 0 &1 &0\\ sin\theta & 0 &cos\theta \end{bmatrix}\tag{24} R=cosθ0sinθ010sinθ0cosθ(24)
将式子(24)和式子(23)代入式子(13)的第三个可得:
d ′ [ c o s θ 0 − s i n θ 0 1 0 s i n θ 0 c o s θ ] [ − x 3 0 x 1 ] = [ − d 1 x 3 0 d 3 x 1 ] d^{'} \begin{bmatrix} cos\theta &0 &-sin\theta\\ 0 &1 & 0\\ sin\theta &0 &cos\theta \end{bmatrix} \begin{bmatrix} -x_3\\ 0\\ x_1 \end{bmatrix}= \begin{bmatrix} -d_1x_3\\ 0\\ d_3x_1 \end{bmatrix} dcosθ0sinθ010sinθ0cosθx30x1=d1x30d3x1
可以解得:
{ s i n θ = ( d 1 − d 3 ) d 2 x 1 x 3 = ϵ 1 ϵ 2 ( d 1 2 − d 2 2 ) ( d 2 2 − d 3 2 ) ( d 1 + d 3 ) d 2 c o s θ = d 3 x 1 2 + d 1 x 3 2 d 2 = d 1 d 3 + d 2 2 ( d 1 + d 3 ) d 2 (25) \left\{\begin{aligned} &sin\theta =\frac{(d_1-d_3)}{d_2}x_1x_3=\epsilon_1\epsilon_2\frac{\sqrt{(d_1^2-d_2^2)(d_2^2-d_3^2)}}{(d_1+d_3)d_2}\\ &cos\theta =\frac{d_3x_1^2+d_1x_3^2}{d_2}=\frac{d_1d_3+d_2^2}{(d_1+d_3)d_2} \end{aligned}\right.\tag{25} sinθ=d2(d1d3)x1x3=ϵ1ϵ2(d1+d3)d2(d12d22)(d22d32) cosθ=d2d3x12+d1x32=(d1+d3)d2d1d3+d22(25)
将式子(24)代入式子(9)中可得:
[ d 1 d 2 d 3 ] = d ′ [ c o s θ 0 − s i n θ 0 1 0 s i n θ 0 c o s θ ] + [ t 1 x 1 0 t 3 x 3 ] \begin{bmatrix} d_1 & &\\ & d_2&\\ & & d_3 \end{bmatrix}=d^{'} \begin{bmatrix} cos\theta &0 & -sin\theta\\ 0 &1 &0\\ sin\theta & 0 &cos\theta \end{bmatrix}+ \begin{bmatrix} t_1x_1 & &\\ & 0 &\\ & & t_3x_3 \end{bmatrix} d1d2d3=dcosθ0sinθ010sinθ0cosθ+t1x10t3x3
所以:
{ d 1 = d ′ c o s θ + t 1 x 1 d 2 = d ′ d 3 = d ′ c o s θ + t 3 x 3 \left\{\begin{aligned} &d_1=d^{'}cos\theta +t_1x_1\\ &d_2=d^{'}\\ &d_3=d^{'}cos\theta +t_3x_3 \end{aligned}\right. d1=dcosθ+t1x1d2=dd3=dcosθ+t3x3
进一步可得:
d 1 − d 3 = t 1 x 1 − t 3 x 3 = [ x 1 0 x 3 ] t ′ d_1-d_3=t_1x_1-t_3x_3= \begin{bmatrix} x_1 &0 &x_3 \end{bmatrix}t^{'} d1d3=t1x1t3x3=[x10x3]t
因此:
t ′ = ( d 1 − d 3 ) [ x 1 0 − x 3 ] (26) t^{'}=(d_1-d_3) \begin{bmatrix} x_1\\ 0\\ -x_3 \end{bmatrix}\tag{26} t=(d1d3)x10x3(26)
所以上述情况一:总共可分获得4组不同的解,分别取, ϵ 1 = ϵ 2 = 1 ; ϵ 1 = 1 , ϵ 2 = − 1 ; ϵ 1 = − 1 , ϵ 2 = 1 ; ϵ 1 = ϵ 2 = − 1 \epsilon_1=\epsilon_2=1;\epsilon_1=1,\epsilon_2=-1;\epsilon_1=-1,\epsilon_2=1;\epsilon_1=\epsilon_2=-1 ϵ1=ϵ2=1;ϵ1=1,ϵ2=1;ϵ1=1,ϵ2=1;ϵ1=ϵ2=1

情况二(针对式子(17)):

d ′ = d 2 = d 1 ≠ d 3 d^{'}=d_2=d_1≠d_3 d=d2=d1=d3代入式子(14)可得:
{ 0 ∗ x 1 2 + 0 ∗ x 2 2 = 0 ( d 2 2 − d 3 2 ) x 2 2 + 0 ∗ x 3 2 = 0 0 ∗ x 3 2 + ( d 2 2 − d 3 2 ) x 1 2 = 0 \left\{\begin{aligned} &0*x_1^2+0*x_2^2=0\\ &(d_2^{2}-d_3^2)x_2^2+0*x_3^2=0\\ &0*x_3^2+(d_2^{2}-d_3^2)x_1^2=0 \end{aligned}\right. 0x12+0x22=0(d22d32)x22+0x32=00x32+(d22d32)x12=0
经过化简可得:
n ′ = { x 1 = 0 x 2 = 0 x 3 = ± 1 (27) n^{'}= \left\{\begin{aligned} &x_1=0\\ &x_2=0\\ &x_3=±1 \end{aligned}\right.\tag{27} n=x1=0x2=0x3=±1(27)
将式子(27)代入式子(9)中可得:
[ d 1 d 2 d 3 ] = d ′ [ 1 1 1 ] + [ 0 0 t 3 x 3 ] \begin{bmatrix} d_1 & &\\ & d_2&\\ & & d_3 \end{bmatrix}=d^{'} \begin{bmatrix} 1 & & \\ &1 &\\ & &1 \end{bmatrix}+ \begin{bmatrix} 0 & &\\ & 0 &\\ & & t_3x_3 \end{bmatrix} d1d2d3=d111+00t3x3
所以:
{ d 1 = d ′ d 2 = d ′ d 3 = d ′ + t 3 x 3 \left\{\begin{aligned} &d_1=d^{'}\\ &d_2=d^{'}\\ &d_3=d^{'} +t_3x_3 \end{aligned}\right. d1=dd2=dd3=d+t3x3
进一步可得:
d 3 − d 1 = t 3 x 3 = [ 0 0 x 3 ] t ′ d_3-d_1=t_3x_3= \begin{bmatrix} 0 &0 &x_3 \end{bmatrix}t^{'} d3d1=t3x3=[00x3]t
因此:
t ′ = ( d 3 − d 1 ) [ 0 0 x 3 ] (28) t^{'}=(d_3-d_1) \begin{bmatrix} 0\\ 0\\ x_3 \end{bmatrix}\tag{28} t=(d3d1)00x3(28)
所以上述情况二:总共可分获得2组不同的解,分别取 x 3 = ± 1. x_3=±1. x3=±1.

情况三(针对式子(18)): 未定义,无法解

情况四(针对式子(19)):

d ′ = − d 2 d^{'}=-d_2 d=d2代入式子(14)可得:
{ 0 ∗ x 1 2 + ( d 2 2 − d 1 2 ) x 2 2 = 0 ( d 2 2 − d 3 2 ) x 2 2 + 0 ∗ x 3 2 = 0 ( d 2 2 − d 1 2 ) x 3 2 + ( d 2 2 − d 3 2 ) x 1 2 = 0 − − − − − − − ( 29 ) \left\{\begin{aligned} &0*x_1^2+(d_2^{2}-d_1^2)x_2^2=0\\ &(d_2^{2}-d_3^2)x_2^2+0*x_3^2=0\\ &(d_2^{2}-d_1^2)x_3^2+(d_2^{2}-d_3^2)x_1^2=0-------(29) \end{aligned}\right. 0x12+(d22d12)x22=0(d22d32)x22+0x32=0(d22d12)x32+(d22d32)x12=0(29)
可得: x 2 = 0 , x 1 2 + x 3 2 = 1 x_2=0,x_1^2+x_3^2=1 x2=0,x12+x32=1

式子(29)变成: ( d 2 2 − d 1 2 ) x 3 2 + ( d 2 2 − d 3 2 ) ( 1 − x 3 2 ) = 0 (d_2^{2}-d_1^2)x_3^2+(d_2^{2}-d_3^2)(1-x_3^2)=0 (d22d12)x32+(d22d32)(1x32)=0

经过化简可得:
n ′ = { x 1 = ϵ 1 d 1 2 − d 2 2 d 1 2 − d 3 2 x 2 = 0 x 3 = ϵ 2 d 2 2 − d 3 2 d 1 2 − d 3 2 ϵ 1 a n d ϵ 2 = ± 1 (30) n^{'}= \left\{\begin{aligned} &x_1=\epsilon_1 \sqrt{\frac{d_1^{2}-d_2^{2}}{d_1^{2}-d_3^{2}}}\\ &x_2=0\\ &x_3=\epsilon_2 \sqrt{\frac{d_2^{2}-d_3^{2}}{d_1^{2}-d_3^{2}}}\\ &\epsilon_1 and \epsilon_2=±1 \end{aligned}\right.\tag{30} n=x1=ϵ1d12d32d12d22 x2=0x3=ϵ2d12d32d22d32 ϵ1andϵ2=±1(30)
n ′ n^{'} n代入式子(11)可得:
R ′ e 2 = − e 2 R^{'}e_2=-e_2 Re2=e2
该式子的含义为 e 2 e_2 e2向量经过旋转之后为原来的相反 e 2 e_2 e2向量,注意到 e 2 = [ 0 1 0 ] T e_2=\begin{bmatrix}0 &1 &0 \end{bmatrix}^T e2=[010]T,为何旋转矩阵的最后两列会乘以负号呢?其实笔者此处也不太理解~~希望读者们如果懂的话,麻烦私信指导下我,感激不尽!!.
故:
R ′ = [ c o s θ 0 s i n θ 0 − 1 0 s i n θ 0 − c o s θ ] (31) R^{'}= \begin{bmatrix} cos\theta &0 & sin\theta\\ 0 &-1 &0\\ sin\theta & 0 &-cos\theta \end{bmatrix}\tag{31} R=cosθ0sinθ010sinθ0cosθ(31)
将式子(30)和式子(31)代入式子(13)的第三个可得:
d ′ [ c o s θ 0 s i n θ 0 − 1 0 s i n θ 0 − c o s θ ] [ − x 3 0 x 1 ] = [ − d 1 x 3 0 d 3 x 1 ] d^{'} \begin{bmatrix} cos\theta &0 &sin\theta\\ 0 &-1 & 0\\ sin\theta &0 &-cos\theta \end{bmatrix} \begin{bmatrix} -x_3\\ 0\\ x_1 \end{bmatrix}= \begin{bmatrix} -d_1x_3\\ 0\\ d_3x_1 \end{bmatrix} dcosθ0sinθ010sinθ0cosθx30x1=d1x30d3x1
可以解得:
{ s i n θ = ( d 1 + d 3 ) d 2 x 1 x 3 = ϵ 1 ϵ 2 ( d 1 2 − d 2 2 ) ( d 2 2 − d 3 2 ) ( d 1 − d 3 ) d 2 c o s θ = d 3 x 1 2 − d 1 x 3 2 d 2 = d 1 d 3 − d 2 2 ( d 1 − d 3 ) d 2 (32) \left\{\begin{aligned} &sin\theta =\frac{(d_1+d_3)}{d_2}x_1x_3=\epsilon_1\epsilon_2\frac{\sqrt{(d_1^2-d_2^2)(d_2^2-d_3^2)}}{(d_1-d_3)d_2}\\ &cos\theta =\frac{d_3x_1^2-d_1x_3^2}{d_2}=\frac{d_1d_3-d_2^2}{(d_1-d_3)d_2} \end{aligned}\right.\tag{32} sinθ=d2(d1+d3)x1x3=ϵ1ϵ2(d1d3)d2(d12d22)(d22d32) cosθ=d2d3x12d1x32=(d1d3)d2d1d3d22(32)
将式子(31)代入式子(9)中可得:
[ d 1 d 2 d 3 ] = d ′ [ c o s θ 0 s i n θ 0 − 1 0 s i n θ 0 − c o s θ ] + [ t 1 x 1 0 t 3 x 3 ] \begin{bmatrix} d_1 & &\\ & d_2&\\ & & d_3 \end{bmatrix}=d^{'} \begin{bmatrix} cos\theta &0 & sin\theta\\ 0 &-1 &0\\ sin\theta & 0 &-cos\theta \end{bmatrix}+ \begin{bmatrix} t_1x_1 & &\\ & 0 &\\ & & t_3x_3 \end{bmatrix} d1d2d3=dcosθ0sinθ010sinθ0cosθ+t1x10t3x3
所以:
{ d 1 = d ′ c o s θ + t 1 x 1 d 2 = − d ′ d 3 = − d ′ c o s θ + t 3 x 3 \left\{\begin{aligned} &d_1=d^{'}cos\theta +t_1x_1\\ &d_2=-d^{'}\\ &d_3=-d^{'}cos\theta +t_3x_3 \end{aligned}\right. d1=dcosθ+t1x1d2=dd3=dcosθ+t3x3
进一步可得:
d 1 + d 3 = t 1 x 1 + t 3 x 3 = [ x 1 0 x 3 ] t ′ d_1+d_3=t_1x_1+t_3x_3= \begin{bmatrix} x_1 &0 &x_3 \end{bmatrix}t^{'} d1+d3=t1x1+t3x3=[x10x3]t
因此:
t ′ = ( d 1 + d 3 ) [ x 1 0 x 3 ] (33) t^{'}=(d_1+d_3) \begin{bmatrix} x_1\\ 0\\ x_3 \end{bmatrix}\tag{33} t=(d1+d3)x10x3(33)
所以上述情况四:总共同样可获得4组不同的解,分别取, ϵ 1 = ϵ 2 = 1 ; ϵ 1 = 1 , ϵ 2 = − 1 ; ϵ 1 = − 1 , ϵ 2 = 1 ; ϵ 1 = ϵ 2 = − 1 \epsilon_1=\epsilon_2=1;\epsilon_1=1,\epsilon_2=-1;\epsilon_1=-1,\epsilon_2=1;\epsilon_1=\epsilon_2=-1 ϵ1=ϵ2=1;ϵ1=1,ϵ2=1;ϵ1=1,ϵ2=1;ϵ1=ϵ2=1

情况五和情况六最后这块笔者并没有取细看,貌似源码中也没有实现这块,就直接把吴博的结论放在这里了
情况五(针对式子(20)):

同理可以解得:
n ′ = { x 1 = 0 x 2 = 0 x 3 = ± 1 (34) n^{'}= \left\{\begin{aligned} &x_1=0\\ &x_2=0\\ &x_3=±1 \end{aligned}\right.\tag{34} n=x1=0x2=0x3=±1(34)
R ′ = [ − 1 0 0 0 − 1 0 0 0 1 ] (35) R^{'}= \begin{bmatrix} -1 &0 & 0\\ 0 &-1 &0\\ 0 & 0 &1 \end{bmatrix}\tag{35} R=100010001(35)
t ′ = ( d 1 + d 3 ) n ′ (36) t^{'}=(d_1+d_3)n^{'}\tag{36} t=(d1+d3)n(36)

情况六(针对式子(21)):

根据公式(7):
Λ = [ d 1 0 0 0 d 2 0 0 0 d 3 ] = d ′ R ′ + t ′ n ′ T \Lambda = \begin{bmatrix} d_1 &0 &0\\ 0 &d_2 & 0\\ 0 &0 &d_3 \end{bmatrix}=d^{'}R^{'}+t^{'}n^{'T} Λ=d1000d2000d3=dR+tnT
根据 d ′ = d 1 = d 2 = d 3 d^{'}=d_1=d_2=d_3 d=d1=d2=d3可得:
[ d ′ 0 0 0 d ′ 0 0 0 d ′ ] = d ′ R ′ + t ′ n ′ T \begin{bmatrix} d^{'} &0 &0\\ 0 &d^{'} & 0\\ 0 &0 &d^{'} \end{bmatrix}=d^{'}R^{'}+t^{'}n^{'T} d000d000d=dR+tnT
即:
I d ′ = d ′ R ′ + t ′ n ′ T Id^{'}=d^{'}R^{'}+t^{'}n^{'T} Id=dR+tnT
取垂直于法向量 n ′ n^{'} n的向量 x x x,代入: I d ′ x = d ′ R ′ + t ′ n ′ T Id^{'}x=d^{'}R^{'}+t^{'}n^{'T} Idx=dR+tnT,则:
R x = − x Rx=-x Rx=x
根据household变换:
R ′ = − I + 2 n ′ n ′ T t ′ = − 2 d ′ n ′ R^{'}=-I+2n^{'}n^{'T}\\ t^{'}=-2d^{'}n^{'} R=I+2nnTt=2dn


源码分析环节

终于把所有公式都敲完了…真是心累…写篇好博客真心太难…
接下来,让我们来看下orbslam2源码中是如何利用单应矩阵和基础矩阵进行相机位姿估计以及三角化测量点的吧.

(1)单应矩阵恢复

首先看下函数接口以及传参的意义吧.

//vbMatchesInliersH: true--inliners  false--outliners
//H:单应矩阵 ,mK:相机内参
//R21,t21:待求相机位姿
//vP3D:三角化测量后的空间三维点坐标
//vbTriangulated:true--成功三角化测量  false--测量失败
//1.0:最小视差为1°   50:三角化测量成功点最低阈值
ReconstructH(vbMatchesInliersH,H,mK,R21,t21,vP3D,vbTriangulated,1.0,50);

系统成功使用单应矩阵进行相机恢复具备如下条件:

  1. 单应矩阵的三个奇异值必须要有足够的差异
  2. 成功三角化测量的内点的个数必须足够突出,远好过第二好,且个数要大于最低阈值
  3. 要有足够的视差

成功三角化测量的内点必须具备如下条件:

  1. 有足够的视差
  2. 在参考帧和当前帧的相机前方
  3. 重投影误差小

实现源码如下:

bool Initializer::ReconstructH(vector<bool> &vbMatchesInliers, cv::Mat &H21, cv::Mat &K,
                      cv::Mat &R21, cv::Mat &t21, vector<cv::Point3f> &vP3D, vector<bool> &vbTriangulated, float minParallax, int minTriangulated)
{
    int N=0;
    for(size_t i=0, iend = vbMatchesInliers.size() ; i<iend; i++)//计算inliers的个数
        if(vbMatchesInliers[i])
            N++;

    // We recover 8 motion hypotheses using the method of Faugeras et al.
    // Motion and structure from motion in a piecewise planar environment.
    // International Journal of Pattern Recognition and Artificial Intelligence, 1988

    cv::Mat invK = K.inv();
    cv::Mat A = invK*H21*K;

    cv::Mat U,w,Vt,V;
    cv::SVD::compute(A,w,U,Vt,cv::SVD::FULL_UV);
    V=Vt.t();

    float s = cv::determinant(U)*cv::determinant(Vt);
    float d1 = w.at<float>(0);
    float d2 = w.at<float>(1);
    float d3 = w.at<float>(2);
    
	//单应矩阵的三个奇异值必须要有足够的差异
    if(d1/d2<1.00001 || d2/d3<1.00001)
    {
        return false;
    }

    vector<cv::Mat> vR, vt, vn;
    vR.reserve(8);
    vt.reserve(8);
    vn.reserve(8);

    //n'=[x1 0 x3] 4 posibilities e1=e3=1, e1=1 e3=-1, e1=-1 e3=1, e1=e3=-1
    float aux1 = sqrt((d1*d1-d2*d2)/(d1*d1-d3*d3));
    float aux3 = sqrt((d2*d2-d3*d3)/(d1*d1-d3*d3));
    float x1[] = {aux1,aux1,-aux1,-aux1};
    float x3[] = {aux3,-aux3,aux3,-aux3};

    //case d'=d2 对应情况一中的四组解
    float aux_stheta = sqrt((d1*d1-d2*d2)*(d2*d2-d3*d3))/((d1+d3)*d2);

    float ctheta = (d2*d2+d1*d3)/((d1+d3)*d2);
    float stheta[] = {aux_stheta, -aux_stheta, -aux_stheta, aux_stheta};

    // 计算旋转矩阵 R‘,计算ppt中公式18
    //      | ctheta      0   -aux_stheta|       | aux1|
    // Rp = |    0        1       0      |  tp = |  0  |
    //      | aux_stheta  0    ctheta    |       |-aux3|

    //      | ctheta      0    aux_stheta|       | aux1|
    // Rp = |    0        1       0      |  tp = |  0  |
    //      |-aux_stheta  0    ctheta    |       | aux3|

    //      | ctheta      0    aux_stheta|       |-aux1|
    // Rp = |    0        1       0      |  tp = |  0  |
    //      |-aux_stheta  0    ctheta    |       |-aux3|

    //      | ctheta      0   -aux_stheta|       |-aux1|
    // Rp = |    0        1       0      |  tp = |  0  |
    //      | aux_stheta  0    ctheta    |       | aux3|

    for(int i=0; i<4; i++)
    {
        cv::Mat Rp=cv::Mat::eye(3,3,CV_32F);
        Rp.at<float>(0,0)=ctheta;
        Rp.at<float>(0,2)=-stheta[i];
        Rp.at<float>(2,0)=stheta[i];
        Rp.at<float>(2,2)=ctheta;

        cv::Mat R = s*U*Rp*Vt;
        vR.push_back(R);

        cv::Mat tp(3,1,CV_32F);
        tp.at<float>(0)=x1[i];
        tp.at<float>(1)=0;
        tp.at<float>(2)=-x3[i];
        tp*=d1-d3;

        // 这里虽然对t有归一化,并没有决定单目整个SLAM过程的尺度
        // 因为CreateInitialMapMonocular函数对3D点深度会缩放,然后反过来对 t 有改变
        cv::Mat t = U*tp;
        vt.push_back(t/cv::norm(t));

        cv::Mat np(3,1,CV_32F);
        np.at<float>(0)=x1[i];
        np.at<float>(1)=0;
        np.at<float>(2)=x3[i];

        cv::Mat n = V*np;
        if(n.at<float>(2)<0)
            n=-n;
        vn.push_back(n);
    }

    //case d'=-d2 对应情况四中的四组解
    float aux_sphi = sqrt((d1*d1-d2*d2)*(d2*d2-d3*d3))/((d1-d3)*d2);

    float cphi = (d1*d3-d2*d2)/((d1-d3)*d2);
    float sphi[] = {aux_sphi, -aux_sphi, -aux_sphi, aux_sphi};

    for(int i=0; i<4; i++)
    {
        cv::Mat Rp=cv::Mat::eye(3,3,CV_32F);
        Rp.at<float>(0,0)=cphi;
        Rp.at<float>(0,2)=sphi[i];
        Rp.at<float>(1,1)=-1;
        Rp.at<float>(2,0)=sphi[i];
        Rp.at<float>(2,2)=-cphi;

        cv::Mat R = s*U*Rp*Vt;
        vR.push_back(R);

        cv::Mat tp(3,1,CV_32F);
        tp.at<float>(0)=x1[i];
        tp.at<float>(1)=0;
        tp.at<float>(2)=x3[i];
        tp*=d1+d3;

        cv::Mat t = U*tp;
        vt.push_back(t/cv::norm(t));

        cv::Mat np(3,1,CV_32F);
        np.at<float>(0)=x1[i];
        np.at<float>(1)=0;
        np.at<float>(2)=x3[i];

        cv::Mat n = V*np;
        if(n.at<float>(2)<0)
            n=-n;
        vn.push_back(n);
    }


    int bestGood = 0;
    int secondBestGood = 0;    
    int bestSolutionIdx = -1;
    float bestParallax = -1;
    vector<cv::Point3f> bestP3D;
    vector<bool> bestTriangulated;

    // Instead of applying the visibility constraints proposed in the Faugeras' paper (which could fail for points seen with low parallax)
    // We reconstruct all hypotheses and check in terms of triangulated points and parallax
    for(size_t i=0; i<8; i++)
    {
        float parallaxi;
        vector<cv::Point3f> vP3Di;
        vector<bool> vbTriangulatedi;
        int nGood = CheckRT(vR[i],vt[i],mvKeys1,mvKeys2,mvMatches12,vbMatchesInliers,K,vP3Di, 4.0*mSigma2, vbTriangulatedi, parallaxi);

		//保存最好和次最好
        if(nGood>bestGood)
        {
            secondBestGood = bestGood;
            bestGood = nGood;
            bestSolutionIdx = i;
            bestParallax = parallaxi;
            bestP3D = vP3Di;
            bestTriangulated = vbTriangulatedi;
        }
        else if(nGood>secondBestGood)
        {
            secondBestGood = nGood;
        }
    }

	//最好必须远大于次最好,且要有足够的视差,且内点数要大于最低阈值
    if(secondBestGood<0.75*bestGood && bestParallax>=minParallax && bestGood>minTriangulated && bestGood>0.9*N)
    {
        vR[bestSolutionIdx].copyTo(R21);
        vt[bestSolutionIdx].copyTo(t21);
        vP3D = bestP3D;
        vbTriangulated = bestTriangulated;

        return true;
    }

    return false;
}

  其中,让我们来看看CheckRT()这个函数吧,这个函数将计算由单应矩阵分解出来的R和t的优劣,并且返回成功三角化测量点的数量,同时计算出特征点的三维点坐标(即在世界坐标系下的坐标,即参考帧坐标系下的坐标),这个时候不知道读者们能否想起来,当时在分解单应矩阵的时候,进行 K − 1 H 21 K − 1 K^{-1}H_{21}K^{-1} K1H21K

你可能感兴趣的:(ORB-SLAM2,C++,SLAM)