LeetCode-剑指 Offer 52. 两个链表的第一个公共节点

输入两个链表,找出它们的第一个公共节点。
如下面的两个链表:
LeetCode-剑指 Offer 52. 两个链表的第一个公共节点_第1张图片
在节点 c1 开始相交。

示例 1:
LeetCode-剑指 Offer 52. 两个链表的第一个公共节点_第2张图片

输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3
输出:Reference of the node with value = 8
输入解释:相交节点的值为 8 (注意,如果两个列表相交则不能为 0)。从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,0,1,8,4,5]。在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。

示例 2:
LeetCode-剑指 Offer 52. 两个链表的第一个公共节点_第3张图片

输入:intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
输出:Reference of the node with value = 2
输入解释:相交节点的值为 2 (注意,如果两个列表相交则不能为 0)。从各自的表头开始算起,链表 A 为 [0,9,1,2,4],链表 B 为 [3,2,4]。在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。

示例 3:
LeetCode-剑指 Offer 52. 两个链表的第一个公共节点_第4张图片

输入:intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
输出:null
输入解释:从各自的表头开始算起,链表 A 为 [2,6,4],链表 B 为 [1,5]。由于这两个链表不相交,所以 intersectVal 必须为 0,而 skipA 和 skipB 可以是任意值。
解释:这两个链表不相交,因此返回 null。

注意:

如果两个链表没有交点,返回 null.
在返回结果后,两个链表仍须保持原有的结构。
可假定整个链表结构中没有循环。
程序尽量满足 O(n) 时间复杂度,且仅用 O(1) 内存。

题源链接:https://leetcode-cn.com/problems/liang-ge-lian-biao-de-di-yi-ge-gong-gong-jie-dian-lcof

解题思路:双指针法,浪漫相遇
我们使用两个指针 node1,node2 分别指向两个链表 headA,headB 的头结点,然后同时分别逐结点遍历,当 node1 到达链表 headA 的末尾时,重新定位到链表 headB 的头结点;当 node2 到达链表 headB 的末尾时,重新定位到链表 headA 的头结点。
这样,当它们相遇时(走过路程相同即相遇点:假设A(5个节点), B(8个节点)两个链表有3个节点相同,那么A有2个节点不是公共部分,B有5个节点不是公共部分,因此有5(A的节点数)+5(B不是公共部分的节点数) = 8(B的节点数)+2(A不是公共部分的节点数)),所指向的结点就是第一个公共结点。

/**
 * Definition for singly-linked list.
 * struct ListNode {
 *     int val;
 *     ListNode *next;
 *     ListNode(int x) : val(x), next(NULL) {}
 * };
 */
class Solution {
public:
    ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
        if (!headA || !headB){
            return nullptr;
        }
        ListNode *pA = headA, *pB = headB;
        while (pA != pB) {
            pA = pA == nullptr ? headB : pA->next;
            pB = pB == nullptr ? headA : pB->next;
        }
        return pA;
    }
};

在这里插入图片描述

你可能感兴趣的:(LeetCode)