Python+opencv --大津法(OTSU)

可以参考这篇博客http://blog.csdn.net/u010128736/

我补充一份python实现OTSU:

def OTSU(img_gray):
    max_g = 0
    suitable_th = 0
    th_begin = 0
    th_end = 256
    for threshold in range(th_begin, th_end):
        bin_img = img_gray > threshold
        bin_img_inv = img_gray <= threshold
        fore_pix = np.sum(bin_img)
        back_pix = np.sum(bin_img_inv)
        if 0 == fore_pix:
            break
        if 0 == back_pix:
            continue

        w0 = float(fore_pix) / img_gray.size
        u0 = float(np.sum(img_gray * bin_img)) / fore_pix
        w1 = float(back_pix) / img_gray.size
        u1 = float(np.sum(img_gray * bin_img_inv)) / back_pix
        # intra-class variance
        g = w0 * w1 * (u0 - u1) * (u0 - u1)
        if g > max_g:
            max_g = g
            suitable_th = threshold

    return suitable_th

对于图像直方图有2个明显波峰的分割效果好。使用时可以先得到图像的直方图,如果跟我一样是新手,我附上一份得到直方图的代码,可以使用matplotlib绘图可视化:

eg:

from matplotlib import pyplot as plt
plt.figure(figsize=(12, 12))
plt.subplot(2, 2, 1), plt.imshow(img1, 'gray'), plt.title('Original')
plt.subplot(2, 2, 3), plt.axis([10, 200, 0, 3000]), plt.hist(img1.ravel(), 100)

用来该表线条的属性

线条风格linestyle或ls 描述 线条风格linestyle或ls 描述
‘-‘ 实线 ‘:’ 虚线  
‘–’ 破折线 ‘None’,’ ‘,’’ 什么都不画  
‘-.’ 点划线  

线条标记

标记maker 描述 标记 描述
‘o’ 圆圈 ‘.’
‘D’ 菱形 ‘s’ 正方形
‘h’ 六边形1 ‘*’ 星号
‘H’ 六边形2 ‘d’ 小菱形
‘_’ 水平线 ‘v’ 一角朝下的三角形
‘8’ 八边形 ‘<’ 一角朝左的三角形
‘p’ 五边形 ‘>’ 一角朝右的三角形
‘,’ 像素 ‘^’ 一角朝上的三角形
‘+’ 加号 ‘\ 竖线
‘None’,’’,’ ‘ ‘x’ X

颜色

可以通过调用matplotlib.pyplot.colors()得到matplotlib支持的所有颜色。

别名 颜色 别名 颜色
b 蓝色 g 绿色
r 红色 y 黄色
c 青色 k 黑色  
m 洋红色 w 白色

如果这两种颜色不够用,还可以通过两种其他方式来定义颜色值:

  • 使用HTML十六进制字符串 color='eeefff' 使用合法的HTML颜色名字(’red’,’chartreuse’等)。
  • 也可以传入一个归一化到[0,1]的RGB元祖。 color=(0.3,0.3,0.4)

很多方法可以介绍颜色参数,如title()。
plt.tilte('Title in a custom color',color='#123456')

背景色

通过向如matplotlib.pyplot.axes()或者matplotlib.pyplot.subplot()这样的方法提供一个axisbg参数,可以指定坐标这的背景色。

subplot(111,axisbg=(0.1843,0.3098,0.3098)

基础

如果你向plot()指令提供了一维的数组或列表,那么matplotlib将默认它是一系列的y值,并自动为你生成x的值。默认的x向量从0开始并且具有和y同样的长度,因此x的数据是[0,1,2,3].

确定坐标范围

  • plt.axis([xmin, xmax, ymin, ymax])
    上面例子里的axis()命令给定了坐标范围。
  • xlim(xmin, xmax)和ylim(ymin, ymax)来调整x,y坐标范围
  • import numpy as np
    import matplotlib.pyplot as plt
    from pylab import *
    
    x = np.arange(-5.0, 5.0, 0.02)
    y1 = np.sin(x)
    
    plt.figure(1)
    plt.subplot(211)
    plt.plot(x, y1)
    
    plt.subplot(212)
    #设置x轴范围
    xlim(-2.5, 2.5)
    #设置y轴范围
    ylim(-1, 1)
    plt.plot(x, y1)

  • 叠加图

    用一条指令画多条不同格式的线。

    import numpy as np
    import matplotlib.pyplot as plt
    
    # evenly sampled time at 200ms intervals
    t = np.arange(0., 5., 0.2)
    
    # red dashes, blue squares and green triangles
    plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
    plt.show()

     

  • plt.figure()

    你可以多次使用figure命令来产生多个图,其中,图片号按顺序增加。这里,要注意一个概念当前图和当前坐标。所有绘图操作仅对当前图和当前坐标有效。通常,你并不需要考虑这些事,下面的这个例子为大家演示这一细节。

    import matplotlib.pyplot as plt
    plt.figure(1)                # 第一张图
    plt.subplot(211)             # 第一张图中的第一张子图
    plt.plot([1,2,3])
    plt.subplot(212)             # 第一张图中的第二张子图
    plt.plot([4,5,6])
    
    
    plt.figure(2)                # 第二张图
    plt.plot([4,5,6])            # 默认创建子图subplot(111)
    
    plt.figure(1)                # 切换到figure 1 ; 子图subplot(212)仍旧是当前图
    plt.subplot(211)             # 令子图subplot(211)成为figure1的当前图
    plt.title('Easy as 1,2,3')   # 添加subplot 211 的标题

     

  •  

    figure感觉就是给图像ID,之后可以索引定位到它。

    plt.text()添加文字说明

  • text()可以在图中的任意位置添加文字,并支持LaTex语法
  • xlable(), ylable()用于添加x轴和y轴标签
  • title()用于添加图的题目
    import numpy as np
    import matplotlib.pyplot as plt
    
    mu, sigma = 100, 15
    x = mu + sigma * np.random.randn(10000)
    
    # 数据的直方图
    n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75)
    
    
    plt.xlabel('Smarts')
    plt.ylabel('Probability')
    #添加标题
    plt.title('Histogram of IQ')
    #添加文字
    plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
    plt.axis([40, 160, 0, 0.03])
    plt.grid(True)
    plt.show()

     


  • text中前两个参数感觉应该是文本出现的坐标位置。

    plt.annotate()文本注释

    在数据可视化的过程中,图片中的文字经常被用来注释图中的一些特征。使用annotate()方法可以很方便地添加此类注释。在使用annotate时,要考虑两个点的坐标:被注释的地方xy(x, y)和插入文本的地方xytext(x, y)。

    import numpy as np
    import matplotlib.pyplot as plt
    
    ax = plt.subplot(111)
    
    t = np.arange(0.0, 5.0, 0.01)
    s = np.cos(2*np.pi*t)
    line, = plt.plot(t, s, lw=2)
    
    plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
                arrowprops=dict(facecolor='black', shrink=0.05),
                )
    
    plt.ylim(-2,2)
    plt.show()


    [^1]:DataHub-Python 数据可视化入门1

    plt.xticks()/plt.yticks()设置轴记号

    现在是明白干嘛用的了,就是人为设置坐标轴的刻度显示的值。

    # 导入 matplotlib 的所有内容(nympy 可以用 np 这个名字来使用)
    from pylab import *
    
    # 创建一个 8 * 6 点(point)的图,并设置分辨率为 80
    figure(figsize=(8,6), dpi=80)
    
    # 创建一个新的 1 * 1 的子图,接下来的图样绘制在其中的第 1 块(也是唯一的一块)
    subplot(1,1,1)
    
    X = np.linspace(-np.pi, np.pi, 256,endpoint=True)
    C,S = np.cos(X), np.sin(X)
    
    # 绘制余弦曲线,使用蓝色的、连续的、宽度为 1 (像素)的线条
    plot(X, C, color="blue", linewidth=1.0, linestyle="-")
    
    # 绘制正弦曲线,使用绿色的、连续的、宽度为 1 (像素)的线条
    plot(X, S, color="r", lw=4.0, linestyle="-")
    
    plt.axis([-4,4,-1.2,1.2])
    # 设置轴记号
    
    xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
           [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
    
    yticks([-1, 0, +1],
           [r'$-1$', r'$0$', r'$+1$'])
    # 在屏幕上显示
    show()


    当我们设置记号的时候,我们可以同时设置记号的标签。注意这里使用了 LaTeX。[^2]

    [^2]:Matplotlib 教程

    移动脊柱 坐标系

    ax = gca()
    ax.spines['right'].set_color('none')
    ax.spines['top'].set_color('none')
    ax.xaxis.set_ticks_position('bottom')
    ax.spines['bottom'].set_position(('data',0))
    ax.yaxis.set_ticks_position('left')
    ax.spines['left'].set_position(('data',0))

    plt.legend()添加图例

    plot(X, C, color="blue", linewidth=2.5, linestyle="-", label="cosine")
    plot(X, S, color="red",  linewidth=2.5, linestyle="-", label="sine")
    
    legend(loc='upper left')

    matplotlib.pyplot

    使用plt.style.use('ggplot')命令,可以作出ggplot风格的图片。

    # Import necessary packages
    import pandas as pd
    %matplotlib inline
    import matplotlib.pyplot as plt
    plt.style.use('ggplot')
    from sklearn import datasets
    from sklearn import linear_model
    import numpy as np
    # Load data
    boston = datasets.load_boston()
    yb = boston.target.reshape(-1, 1)
    Xb = boston['data'][:,5].reshape(-1, 1)
    # Plot data
    plt.scatter(Xb,yb)
    plt.ylabel('value of house /1000 ($)')
    plt.xlabel('number of rooms')
    # Create linear regression object
    regr = linear_model.LinearRegression()
    # Train the model using the training sets
    regr.fit( Xb, yb)
    # Plot outputs
    plt.scatter(Xb, yb,  color='black')
    plt.plot(Xb, regr.predict(Xb), color='blue',
             linewidth=3)
    plt.show()

    给特殊点做注释

    好吧,又是注释,多个例子参考一下!

    我们希望在 2π/32π/3 的位置给两条函数曲线加上一个注释。首先,我们在对应的函数图像位置上画一个点;然后,向横轴引一条垂线,以虚线标记;最后,写上标签。

    t = 2*np.pi/3
    # 作一条垂直于x轴的线段,由数学知识可知,横坐标一致的两个点就在垂直于坐标轴的直线上了。这两个点是起始点。
    plot([t,t],[0,np.cos(t)], color ='blue', linewidth=2.5, linestyle="--")
    scatter([t,],[np.cos(t),], 50, color ='blue')
    
    annotate(r'$\sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
             xy=(t, np.sin(t)), xycoords='data',
             xytext=(+10, +30), textcoords='offset points', fontsize=16,
             arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
    
    plot([t,t],[0,np.sin(t)], color ='red', linewidth=2.5, linestyle="--")
    scatter([t,],[np.sin(t),], 50, color ='red')
    
    annotate(r'$\cos(\frac{2\pi}{3})=-\frac{1}{2}$',
             xy=(t, np.cos(t)), xycoords='data',
             xytext=(-90, -50), textcoords='offset points', fontsize=16,
             arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))

     

    plt.subplot()

    plt.subplot(2,3,1)表示把图标分割成2*3的网格。也可以简写plt.subplot(231)。其中,第一个参数是行数,第二个参数是列数,第三个参数表示图形的标号。

    plt.axes()

    我们先来看什么是Figure和Axes对象。在matplotlib中,整个图像为一个Figure对象。在Figure对象中可以包含一个,或者多个Axes对象。每个Axes对象都是一个拥有自己坐标系统的绘图区域。其逻辑关系如下^3:

    plt.axes-官方文档

  • axes() by itself creates a default full subplot(111) window axis.
  • axes(rect, axisbg=’w’) where rect = [left, bottom, width, height] in normalized (0, 1) units. axisbg is the background color for the axis, default white.
  • axes(h) where h is an axes instance makes h the current axis. An Axes instance is returned.

    rect=[左, 下, 宽, 高] 规定的矩形区域,rect矩形简写,这里的数值都是以figure大小为比例,因此,若是要两个axes并排显示,那么axes[2]的左=axes[1].左+axes[1].宽,这样axes[2]才不会和axes[1]重叠。

  • show code

    http://matplotlib.org/examples/pylab_examples/axes_demo.html
    
    import matplotlib.pyplot as plt
    import numpy as np
    
    # create some data to use for the plot
    dt = 0.001
    t = np.arange(0.0, 10.0, dt)
    r = np.exp(-t[:1000]/0.05)               # impulse response
    x = np.random.randn(len(t))
    s = np.convolve(x, r)[:len(x)]*dt  # colored noise
    
    # the main axes is subplot(111) by default
    plt.plot(t, s)
    plt.axis([0, 1, 1.1*np.amin(s), 2*np.amax(s)])
    plt.xlabel('time (s)')
    plt.ylabel('current (nA)')
    plt.title('Gaussian colored noise')
    
    # this is an inset axes over the main axes
    a = plt.axes([.65, .6, .2, .2], axisbg='y')
    n, bins, patches = plt.hist(s, 400, normed=1)
    plt.title('Probability')
    plt.xticks([])
    plt.yticks([])
    
    # this is another inset axes over the main axes
    a = plt.axes([0.2, 0.6, .2, .2], axisbg='y')
    plt.plot(t[:len(r)], r)
    plt.title('Impulse response')
    plt.xlim(0, 0.2)
    plt.xticks([])
    plt.yticks([])
    
    plt.show()
    

     

    []:绘图: matplotlib核心剖析

    pyplot.pie参数

  • matplotlib.pyplot.pie
  • colors颜色

    找出matpltlib.pyplot.plot中的colors可以取哪些值?

  • so-Named colors in matplotlib
  • CSDN-matplotlib学习之(四)设置线条颜色、形状
  • 打印颜色值和对应的RGB值。

  • plt.axis('equal')避免比例压缩为椭圆

你可能感兴趣的:(python初学,OpenCV)