使用load_image_file导入这些图片:
# 加载已知图片
known_image_cc = face_recognition.load_image_file("know/reba.jpg")
known_image_xy = face_recognition.load_image_file("know/jiangxin.jpg")
known_image_smy = face_recognition.load_image_file("know/xiayu.jpg")
known_image_zch= face_recognition.load_image_file("know/zhangyishan.jpg")
然后,使用face_encodings对图片进行编码,获取128维特征向量。
同时,之后我们需要遍历已经照片来识别,所以先将已知人脸存为数组。
# 对图片进行编码,获取128维特征向量
rb_encoding = face_recognition.face_encodings(known_image_rb)[0]
jx_encoding = face_recognition.face_encodings(known_image_jx)[0]
xy_encoding = face_recognition.face_encodings(known_image_xy)[0]
zys_encoding = face_recognition.face_encodings(known_image_zys)[0]
# 存为数组以便之后识别
known_faces = [
rb_encoding,
jx_encoding,
xy_encoding,
zys_encoding
]
四张照片分布对应于不同的已知照片中的任务。
# 加载待识别图片
unknown_image_1 = face_recognition.load_image_file("unknow/reba1.jpg")
unknown_image_2 = face_recognition.load_image_file("unknow/reba2.jpg")
unknown_image_3 = face_recognition.load_image_file("unknow/xy.jpg")
unknown_image_4 = face_recognition.load_image_file("unknow/zys.jpg")
unknown_faces = [
unknown_image_1,
unknown_image_2,
unknown_image_3,
unknown_image_4
]
遍历未知图片,对每一种未知图片,获取其人脸位置和特征向量。将得到的位置图片特征向量与所有已知的特征向量进行比较,判断是否为同一个人。
需要注意的是这里我们设置 tolerance 为0.5,实际应用时,可以根据自己对准确度的要求,进行调整。
# 初始化一些变量
face_locations = []
face_encodings = []
face_names = []
frame_number = 0
for frame in unknown_faces:
face_names = []
# 获取人脸区域位置
face_locations = face_recognition.face_locations(frame)
# 对图片进行编码,获取128维特征向量
face_encodings = face_recognition.face_encodings(frame, face_locations)
for face_encoding in face_encodings:
# 识别图片中人脸是否匹配已知图片
match = face_recognition.compare_faces(
known_faces, face_encoding, tolerance=0.5)
得到是否是同一个人的结果之后,我们可以对应其姓名,添加到face_names数组中。
name = None
if match[0]:
name = "Dilireba"
elif match[1]:
name = "Jang Xin"
elif match[2]:
name = "Xia Yu"
elif match[3]:
name = 'Zhang Yishan'
else:
name = 'Unknown'
face_names.append(name)
得到对应的人脸识别结果之后,我们将遍历每一张未知图片中的人脸,通过 OpenCV的rectangle绘制脸部区域框和putText对应的人名。
# 结果打上标签
for (top, right, bottom, left), name in zip(face_locations, face_names):
# 绘制脸部区域框
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# 在脸部区域下面绘制人名
cv2.rectangle(frame, (left, bottom - 25),
(right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6),
font, 0.5, (255, 255, 255), 1)
最后,再将绘制完成的代码展示或者保存。
# 加载模块
import face_recognition
import cv2
# 加载已知图片
known_image_rb = face_recognition.load_image_file(
"know/reba.jpg")
known_image_jx = face_recognition.load_image_file(
"know/jiangxin.jpg")
known_image_xy = face_recognition.load_image_file(
"know/xiayu.jpg")
known_image_zys = face_recognition.load_image_file(
"know/zhangyishan.jpg")
# 对图片进行编码,获取128维特征向量
rb_encoding = face_recognition.face_encodings(known_image_rb)[0]
jx_encoding = face_recognition.face_encodings(known_image_jx)[0]
xy_encoding = face_recognition.face_encodings(known_image_xy)[0]
zys_encoding = face_recognition.face_encodings(known_image_zys)[0]
# 把已识别图片的编码存为列表
known_faces = [
rb_encoding,
jx_encoding,
xy_encoding,
zys_encoding
]
# 加载待识别图片
unknown_image_1 = face_recognition.load_image_file(
"unknow/reba1.jpg")
unknown_image_2 = face_recognition.load_image_file(
"unknow/reba2.jpg")
unknown_image_3 = face_recognition.load_image_file(
"unknow/xy.jpg")
unknown_image_4 = face_recognition.load_image_file(
"unknow/zys.jpg")
# 把待识别图片存为列表
unknown_faces = [
unknown_image_1,
unknown_image_2,
unknown_image_3,
unknown_image_4
]
# 初始化一些变量
face_locations = []
face_encodings = []
face_names = []
frame_number = 0
# 将待识别图片列表遍历
for frame in unknown_faces:
face_names = []
# 获取待识别图片人脸区域位置
face_locations = face_recognition.face_locations(frame)
# 对待识别图片人脸区域位置进行编码,获取128维特征向量
face_encodings = face_recognition.face_encodings(frame, face_locations)
# 对待识别图片的编码列表遍历
for face_encoding in face_encodings:
# 识别图片中人脸是否匹配已知图片
match = face_recognition.compare_faces(known_faces, face_encoding, tolerance=0.5)
name = None
if match[0]:
name = "Dilireba"
elif match[1]:
name = "Jang Xin"
elif match[2]:
name = "Xia Yu"
elif match[3]:
name = 'Zhang Yishan'
else:
name = 'Unknown'
face_names.append(name)
# 结果打上标签
for (top, right, bottom, left), name in zip(face_locations, face_names):
if not name:
continue
# 绘制脸部区域框
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# 在脸部区域下面绘制人名
cv2.rectangle(frame, (left, bottom - 25),
(right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6),
font, 0.5, (255, 255, 255), 1)
# 显示图片
image_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
cv2.imshow("Lao Wang.jpg", image_rgb)
cv2.waitKey(0)