一张图帮你弄懂text-cnn


1、何为textcnn

利用卷积神经网络对文本进行分类的算法,那如何用卷积神经网络对文本进行分类呢。这里就tensorflow版本的textcnn源码分析一波。要知道,对文本向量化之后一般是一个一维向量来代表这个文本,但是卷积神经网络一般是对图像进行处理的,那如何将一维转化成二维呢,textcnn在卷积层之前设置了一个embedding层,即将词向量嵌入进去。那具体如何操作的呢。

比如一句话(“白条”,“如何”,“开通”),假设给每个词一个id{“白条”:1,“如何”:2,“开通”:3},文本向量化之后则是【1,2,3】的一个一维向量,但是无法满足卷积层的输入,所以嵌入一个embedding层,此时假设每个词都有一个3维的词向量,{"白条":【2,3,4】,“如何”:【3,5,1】,“开通”:【4,5,6】},则通过embedding层的映射,原文本经过词向量嵌入之后变成【【2,3,4】,【3,5,1】,【4,5,6】】的二维向量,当然卷积神经网络对图像进行卷积时还有通道一说,这里对二维向量可以自动扩充一个维度以满足通道的这一个维度。


2、textcnn tensorflow 结构代码

'''
__author__ : 'shizhengxin'
'''
import tensorflow as tf
import numpy as np
class TextCNN(object):
    """
    A CNN for text classification.
    Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer.
    """
    def __init__(
      self, sequence_length, num_classes, vocab_size  ,embedding_matrix,
      embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0):
        # embedding_matrix,
        # Placeholders for input, output and dropout
        self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
        self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")

        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0)
        #Embedding layer
        # with tf.device('/cpu:0'), tf.name_scope("embedding"):
        #     W = tf.Variable(
        #         tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
        #         name="W")
        #     self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)
        #     self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
        with tf.device('/cpu:0'), tf.name_scope("embedding"):
            self.embedded_chars = tf.nn.embedding_lookup(embedding_matrix, self.input_x)
            self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
            self.embedded_chars_expanded = tf.cast(self.embedded_chars_expanded,dtype=tf.float32)
            print(self.embedded_chars_expanded.shape)

        # Create a convo
        #
        # lution + maxpool layer for each filter size
        pooled_outputs = []
        for i, filter_size in enumerate(filter_sizes):
            with tf.name_scope("conv-maxpool-%s" % filter_size):
                # Convolution Layer
                filter_shape = [filter_size, embedding_size, 1, num_filters]
                W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W")
                b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b")
                conv = tf.nn.conv2d(
                    self.embedded_chars_expanded,
                    W,
                    strides=[1, 1, 1, 1],
                    padding="VALID",
                    name="conv")
                # Apply nonlinearity
                h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
                # Maxpooling over the outputs
                pooled = tf.nn.max_pool(
                    h,
                    ksize=[1, sequence_length - filter_size + 1, 1, 1],
                    strides=[1, 1, 1, 1],
                    padding='VALID',
                    name="pool")
                pooled_outputs.append(pooled)

        # Combine all the pooled features
        num_filters_total = num_filters * len(filter_sizes)
        self.h_pool = tf.concat(pooled_outputs, 3)
        self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])

        # Add dropout
        with tf.name_scope("dropout"):
            self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)

        # Final (unnormalized) scores and predictions
        with tf.name_scope("output"):
            W = tf.get_variable(
                "W",
                shape=[num_filters_total, num_classes],
                initializer=tf.contrib.layers.xavier_initializer())
            b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
            l2_loss += tf.nn.l2_loss(W)
            l2_loss += tf.nn.l2_loss(b)
            self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
            self.probability = tf.nn.sigmoid(self.scores)
            self.predictions = tf.argmax(self.scores, 1, name="predictions")

        # CalculateMean cross-entropy loss
        with tf.name_scope("loss"):
            losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.scores)
            self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss

        # Accuracy
        with tf.name_scope("accuracy"):
            correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
            self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")


可以看出textcnn的卷积方式是对输入层做三次不同卷积核的卷积,每次卷积后进行池化。

3、一张图让你搞懂textcnn

一张图帮你弄懂text-cnn_第1张图片

这是我画的一张textcnn结构图

1、首先输入层,将文本经过embedding之后形成了一个2000*300的维度,其中2000为文本最大长度、300为词向量的维度。

2、卷积层,卷积层设计三个不同大小的卷积核,【3*300,4*300,5*300】,每个不同大小的卷积核各128个。卷积后分别成为【1998*1*128,1997*1*128,1996*1*128】的feture-map,这里为什么会变成大小这样的,是因为tensorflow的卷积方式采用same 或者 valid的形式,这种卷积的方式采用的是valid 具体大家可以看看官方文档。

3、经过卷积之后,随后是三个池化层,池化层的目的是缩小特征图,这里同池化层的设置,将卷积层的特征池化之后的图为【1*1*128,1*1*128,1*1*28】,经过reshape维度合并成【3*128】。

4、全连接层就不必说,采用softmax就可以解决了。


你可能感兴趣的:(自然语言处理)