Java内存模型(深入理解Java虚拟机学习笔记)

参考文章:深入理解Java内存模型(一)——基础

主内存与工作内存

Java内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节。此处的变量(Variables)与Java编程中所说的变量有所区别,它包括了实例字段、 静态字段和构成数组对象的元素,但不包括局部变量与方法参数,因为后者是线程私有的,不会在线程之间共享,不会有内存可见性问题,也不受内存模型的影响。 为了获得较好的执行效能,Java内存模型并没有限制执行引擎使用处理器的特定寄存器或缓存来和主内存进行交互,也没有限制即时编译器进行调整代码执行顺序这类优化措施。

Java内存模型规定了所有的变量都存储在主内存(Main Memory)中(此处的主内存与物理硬件时的主内存名字一样,两者也可以互相类比,但此处仅是虚拟机内存的一部分)。每条线程还有自己的工作内存(Working Memory,可与处理器高速缓存类比),线程的工作内存中保存了被该线程使用到的变量的主内存副本拷贝,线程对变量的所有操作(读取、 赋值等)都必须在工作内存中进行,而不能直接读写主内存中的变量。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成,线程、 主内存、 工作内存三者的交互关系如下图所示:
Java内存模型(深入理解Java虚拟机学习笔记)_第1张图片

这里所讲的主内存、工作内存与JVM内存模型中的Java堆、 栈、 方法区等并不是同一个层次的内存划分,这两者基本上是没有关系的,如果两者一定要勉强对应起来,那从变量、 主内存、 工作内存的定义来看,主内存主要对应于Java堆中的对象实例数据部分,而工作内存则对应于虚拟机栈中的部分区域。 从更低层次上说,主内存就直接对应于物理硬件的内存,而为了获取更好的运行速度,虚拟机(甚至是硬件系统本身的优化措施)可能会让工作内存优先存储于寄存器和高速缓存中,因为程序运行时主要访问读写的是工作内存。进一步了解可以参考丹麦大牛 Jakob Jenkov写的Java Memory Model。

内存间交互操作

关于主内存与工作内存之间具体的交互协议,即一个变量如何从主内存拷贝到工作内存、 如何从工作内存同步回主内存之类的实现细节,Java内存模型中定义了以下8种操作来完成,虚拟机实现时必须保证下面提及的每一种操作都是原子的、 不可再分的(对于double和long类型的变量来说,load、 store、 read和write操作,在某些平台上允许有例外。
1.lock(锁定):作用于主内存的变量,它把一个变量标识为一条线程独占的状态。
2.unlock(解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
3.read(读取):作用于主内存的变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用。
4.load(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。
5.use(使用):作用于工作内存的变量,它把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用到变量的值的字节码指令时将会执行这个操作。
6.assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。
7.store(存储):作用于工作内存的变量,它把工作内存中一个变量的值传送到主内存中,以便随后的write操作使用。
8.write(写入):作用于主内存的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中。

如果要把一个变量从主内存复制到工作内存,那就要顺序地执行read和load操作,如果要把变量从工作内存同步回主内存,就要顺序地执行store和write操作。 注意,Java内存模型只要求上述两个操作必须按顺序执行,而没有保证是连续执行。 也就是说,read与load之间、 store与write之间是可插入其他指令的,如对主内存中的变量a、 b进行访问时,一种可能出现顺序是read a、 read b、 load b、 load a。 除此之外,Java内存模型还规定了在执行上述8种基本操作时必须满足如下规则:
1.不允许read和load、 store和write操作之一单独出现,即不允许一个变量从主内存读取了但工作内存不接受,或者从工作内存发起回写了但主内存不接受的情况出现。
2.不允许一个线程丢弃它的最近的assign操作,即变量在工作内存中改变了之后必须把该
变化同步回主内存。
3.不允许一个线程无原因地(没有发生过任何assign操作)把数据从线程的工作内存同步回主内存中。
4.一个新的变量只能在主内存中“诞生”,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量,换句话说,就是对一个变量实施use、 store操作之前,必须先执行过了assign和load操作。
5.一个变量在同一个时刻只允许一条线程对其进行lock操作,但lock操作可以被同一条线程重复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。
6.如果对一个变量执行lock操作,那将会清空工作内存中此变量的值,在执行引擎使用这个变量前,需要重新执行load或assign操作初始化变量的值。
7.如果一个变量事先没有被lock操作锁定,那就不允许对它执行unlock操作,也不允许去unlock一个被其他线程锁定住的变量。
8.对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、 write操作)。

这8种内存访问操作以及上述规则限定,再加上稍后介绍的对volatile的一些特殊规定,就已经完全确定了Java程序中哪些内存访问操作在并发下是安全的。 由于这种定义相当严谨但又十分烦琐,实践起来很麻烦,所以在之后将介绍这种定义的一个等效判断原则——先行发生原则,用来确定一个访问在并发环境下是否安全。

对于volatile型变量的特殊规则

可以查看对于volatile型变量的特殊规则(深入理解Java虚拟机学习笔记)。

对于long和double型变量的特殊规则

Java内存模型要求lock、 unlock、 read、 load、 assign、 use、 store、 write这8个操作都具有原子性,但是对于64位的数据类型(long和double),在模型中特别定义了一条相对宽松的规定:允许虚拟机将没有被volatile修饰的64位数据的读写操作划分为两次32位的操作来进行,即允许虚拟机实现选择可以不保证64位数据类型的load、 store、 read和write这4个操作的原子性,这点就是所谓的long和double的非原子性协定(Nonatomic Treatment ofdouble andlong Variables)。

如果有多个线程共享一个并未声明为volatile的long或double类型的变量,并且同时对它们进行读取和修改操作,那么某些线程可能会读取到一个既非原值,也不是其他线程修改值的代表了“半个变量”的数值。

不过这种读取到“半个变量”的情况非常罕见(在目前商用Java虚拟机中不会出现),因为Java内存模型虽然允许虚拟机不把long和double变量的读写实现成原子操作,但允许虚拟机选择把这些操作实现为具有原子性的操作,而且还“强烈建议”虚拟机这样实现。 在实际开发中,目前各种平台下的商用虚拟机几乎都选择把64位数据的读写操作作为原子操作来对待,因此我们在编写代码时一般不需要把用到的long和double变量专门声明为volatile。

原子性、 可见性与有序性

介绍完Java内存模型的相关操作和规则,我们再整体回顾一下这个模型的特征。 Java内存模型是围绕着在并发过程中如何处理原子性、 可见性和有序性这3个特征来建立的,我们逐个来看一下哪些操作实现了这3个特性。

原子性(Atomicity):由Java内存模型来直接保证的原子性变量操作包括read、 load、assign、 use、 store和write,我们大致可以认为基本数据类型的访问读写是具备原子性的(例外就是long和double的非原子性协定,读者只要知道这件事情就可以了,无须太过在意这些几乎不会发生的例外情况)。如果应用场景需要一个更大范围的原子性保证(经常会遇到),Java内存模型还提供了lock和unlock操作来满足这种需求,尽管虚拟机未把lock和unlock操作直接开放给用户使用,但是却提供了更高层次的字节码指令monitorenter和monitorexit来隐式地使用这两个操作,这两个字节码指令反映到Java代码中就是同步块——synchronized关键字,因此在synchronized块之间的操作也具备原子性。
可见性(Visibility):可见性是指当一个线程修改了共享变量的值,其他线程能够立即得知这个修改。 Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性的,无论是普通变量还是volatile变量都是如此,普通变量与volatile变量的区别是,volatile的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。 因此,可以说volatile保证了多线程操作时变量的可见性,而普通变量则不能保证这一点。
除了volatile之外,Java还有两个关键字能实现可见性,即synchronized和final。 同步块的可见性是由“对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)”这条规则获得的,而final关键字的可见性是指:被final修饰的字段在构造器中一旦初始化完成,并且构造器没有把“this”的引用传递出去(this引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那在其他线程中就能看见final字段的值。 如下代码所示,变量i与j都具备可见性,它们无须同步就能被其他线程正确访问。

public static final int i;
public final int j;
static{
i = 0;
//do something;
}

{
j = 0;
//do something;
}
}

有序性(Ordering):Java内存模型的有序性在前面讲解volatile时也详细地讨论过了,Java程序中天然的有序性可以总结为一句话:如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。 前半句是指“线程内表现为串行的语义”(Within-Thread As-If-Serial Semantics),后半句是指“指令重排序”现象和“工作内存与主内存同步延迟”现象。Java语言提供了volatile和synchronized两个关键字来保证线程之间操作的有序性,volatile关键字本身就包含了禁止指令重排序的语义,而synchronized则是由“一个变量在同一个时刻只允许一条线程对其进行lock操作”这条规则获得的,这条规则决定了持有同一个锁的两个同步块只能串行地进入。
介绍完并发中3种重要的特性后,读者有没有发现synchronized关键字在需要这3种特性的时候都可以作为其中一种的解决方案?看起来很“万能”吧。 的确,大部分的并发控制操作都能使用synchronized来完成。 synchronized的“万能”也间接造就了它被程序员滥用的局面,越“万能”的并发控制,通常会伴随着越大的性能影响。

先行发生原则(happens-before)

如果Java内存模型中所有的有序性都仅仅靠volatile和synchronized来完成,那么有一些操作将会变得很烦琐,但是我们在编写Java并发代码的时候并没有感觉到这一点,这是因为Java语言中有一个“先行发生”(happens-before)的原则。 这个原则非常重要,它是判断数据是否存在竞争、 线程是否安全的主要依据,依靠这个原则,我们可以通过几条规则一揽子地解决并发环境下两个操作之间是否可能存在冲突的所有问题。
现在就来看看“先行发生”原则指的是什么。 先行发生是Java内存模型中定义的两项操作之间的偏序关系,如果说操作A先行发生于操作B,其实就是说在发生操作B之前,操作A产生的影响能被操作B观察到,“影响”包括修改了内存中共享变量的值、 发送了消息、 调用了方法等。 这句话不难理解,但它意味着什么呢?我们可以举个例子来说明一下,如下伪代码:

//以下操作在线程A中执行
i=1//以下操作在线程B中执行
j=i;
//以下操作在线程C中执行
i=2

假设线程A中的操作“i=1”先行发生于线程B的操作“j=i”,那么可以确定在线程B的操作执行后,变量j的值一定等于1,得出这个结论的依据有两个:一是根据先行发生原则,“i=1”的结果可以被观察到;二是线程C还没“登场”,线程A操作结束之后没有其他线程会修改变量i的值。 现在再来考虑线程C,我们依然保持线程A和线程B之间的先行发生关系,而线程C出现在线程A和线程B的操作之间,但是线程C与线程B没有先行发生关系,那j的值会是多少呢?答案是不确定!1和2都有可能,因为线程C对变量i的影响可能会被线程B观察到,也可能不会,这时候线程B就存在读取到过期数据的风险,不具备多线程安全性。

下面是Java内存模型下一些“天然的”先行发生关系,这些先行发生关系无须任何同步器协助就已经存在,可以在编码中直接使用。 如果两个操作之间的关系不在此列,并且无法从下列规则推导出来的话,它们就没有顺序性保障,虚拟机可以对它们随意地进行重排序:
1.程序次序规则(Program Order Rule):在一个线程内,按照程序代码顺序,书写在前面的操作先行发生于书写在后面的操作。 准确地说,应该是控制流顺序而不是程序代码顺序,因为要考虑分支、 循环等结构。
2.管程锁定规则(Monitor Lock Rule):一个unlock操作先行发生于后面对同一个锁的lock操作。 这里必须强调的是同一个锁,而“后面”是指时间上的先后顺序。
3.volatile变量规则(Volatile Variable Rule):对一个volatile变量的写操作先行发生于后面对这个变量的读操作,这里的“后面”同样是指时间上的先后顺序。
4.线程启动规则(Thread Start Rule):Thread对象的start()方法先行发生于此线程的每一个动作。
5.线程终止规则(Thread Termination Rule):线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Thread.join()方法结束、 Thread.isAlive()的返回值等手段检测到线程已经终止执行。
6.线程中断规则(Thread Interruption Rule):对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Thread.interrupted()方法检测到是否有中断发生。
7.对象终结规则(Finalizer Rule):一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()方法的开始。
8.传递性(Transitivity):如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出操作A先行发生于操作C的结论。

Java语言无须任何同步手段保障就能成立的先行发生规则就只有上面这些了,笔者演示一下如何使用这些规则去判定操作间是否具备顺序性,对于读写共享变量的操作来说,就是线程是否安全,读者还可以从下面这个例子中感受一下“时间上的先后顺序”与“先行发生”之间有什么不同:

private int value=0;
pubilc void setValue(int value){
    this.value=value;
}
public int getValue(){
    return value;
}

以上显示的是一组再普通不过的getter/setter方法,假设存在线程A和B,线程A先(时间上的先后)调用了“setValue(1)”,然后线程B调用了同一个对象的“getValue()”,那么线程B收到的返回值是什么?
我们依次分析一下先行发生原则中的各项规则,由于两个方法分别由线程A和线程B调用,不在一个线程中,所以程序次序规则在这里不适用;由于没有同步块,自然就不会发生lock和unlock操作,所以管程锁定规则不适用;由于value变量没有被volatile关键字修饰,所以volatile变量规则不适用;后面的线程启动、 终止、 中断规则和对象终结规则也和这里完全没有关系。 因为没有一个适用的先行发生规则,所以最后一条传递性也无从谈起,因此我们可以判定尽管线程A在操作时间上先于线程B,但是无法确定线程B中“getValue()”方法的返回结果,换句话说,这里面的操作不是线程安全的。
那怎么修复这个问题呢?我们至少有两种比较简单的方案可以选择:要么把getter/setter方法都定义为synchronized方法,这样就可以套用管程锁定规则;要么把value定义为volatile变量,由于setter方法对value的修改不依赖value的原值,满足volatile关键字使用场景,这样就可以套用volatile变量规则来实现先行发生关系。

通过上面的例子,我们可以得出结论:一个操作“时间上的先发生”不代表这个操作会是“先行发生”,那如果一个操作“先行发生”是否就能推导出这个操作必定是“时间上的先发生”呢?很遗憾,这个推论也是不成立的,一个典型的例子就是多次提到的“指令重排序”,演示例子如下代码所示:

//以下操作在同一个线程中执行
int i=1int j=2

以上代码的两条赋值语句在同一个线程之中,根据程序次序规则,“int i=1”的操作先行发生于“int j=2”,但是“int j=2”的代码完全可能先被处理器执行,这并不影响先行发生原则的正确性,因为我们在这条线程之中没有办法感知到这点。
上面两个例子综合起来证明了一个结论:时间先后顺序与先行发生原则之间基本没有太大的关系,所以我们衡量并发安全问题的时候不要受到时间顺序的干扰,一切必须以先行发生原则为准。

其他相关的基础原理

指令重排序

在执行程序时,为了提高性能,编译器和处理器会对指令做重排序。但是,JMM确保在不同的编译器和不同的处理器平台之上,通过插入特定类型的Memory Barrier来禁止特定类型的编译器重排序和处理器重排序,为上层提供一致的内存可见性保证。

1.编译器优化重排序:编译器在不改变单线程程序语义的前提下,可以重新安排语句的执行顺序。
2.指令级并行的重排序:如果不存l在数据依赖性,处理器可以改变语句对应机器指令的执行顺序。
3.内存系统的重排序:处理器使用缓存和读写缓冲区,这使得加载和存储操作看上去可能是在乱序执行。
4.数据依赖性:如果两个操作访问同一个变量,其中一个为写操作,此时这两个操作之间存在数据依赖性。 编译器和处理器不会改变存在数据依赖性关系的两个操作的执行顺序,即不会重排序。
5.as-if-serial:不管怎么重排序,单线程下的执行结果不能被改变,编译器、runtime和处理器都必须遵守as-if-serial语义。

内存屏障(Memory Barrier )

上面讲到了,通过内存屏障可以禁止特定类型处理器的重排序,从而让程序按我们预想的流程去执行。内存屏障,又称内存栅栏,是一个CPU指令,基本上它是一条这样的指令:
保证特定操作的执行顺序。
影响某些数据(或则是某条指令的执行结果)的内存可见性。
编译器和CPU能够重排序指令,保证最终相同的结果,尝试优化性能。插入一条Memory Barrier会告诉编译器和CPU:不管什么指令都不能和这条Memory Barrier指令重排序。

Memory Barrier所做的另外一件事是强制刷出各种CPU cache,如一个Write-Barrier(写入屏障)将刷出所有在Barrier之前写入 cache 的数据,因此,任何CPU上的线程都能读取到这些数据的最新版本。
这和java有什么关系?上面java内存模型中讲到的volatile是基于Memory Barrier实现的。
如果一个变量是volatile修饰的,JMM会在写入这个字段之后插进一个Write-Barrier指令,并在读这个字段之前插入一个Read-Barrier指令。这意味着,如果写入一个volatile变量,就可以保证:
一个线程写入变量a后,任何线程访问该变量都会拿到最新值。
在写入变量a之前的写入操作,其更新的数据对于其他线程也是可见的。因为Memory Barrier会刷出cache中的所有先前的写入。

你可能感兴趣的:(JVM)