[转]B树(多向平衡查找树)详解

B-树是对2-3树数据结构的扩展。它支持对保存在磁盘或者网络上的符号表进行外部查找,这些文件可能比我们以前考虑的输入要大的多(以前的输入能够保存在内存中)。

(B树和B+树是实现数据库的数据结构,一般程序员用不到它。)

和2-3树一样,我们限制了每个结点中能够含有的“键-链接”对的上下数量界限:一个M阶的B-树,每个结点最多含有M-1对键-链接(假设M足够小,使得每个M向结点都能够存放在一个页中),最少含有M/2对键-链接,但也不能少于2对。

(B树是用于存储海量数据的,一般其一个结点就占用磁盘一个块的大小。)

【注】以下B树部分参考自July的博客,尤其是插入及删除示图,为了省力直接Copy自July。

 

B树中的结点存放的是键-值对。图中红色方块即为键对应值的指针。

B树中的每个结点根据实际情况可以包含大量的关键字信息和分支(当然是不能超过磁盘块的大小,根据磁盘驱动(diskdrives)的不同,一般块的大小在1k~4k左右);这样树的深度降低了,这就意味着查找一个元素只要很少结点从外存磁盘中读入内存,很快访问到要查找的数据。

 

查找

假如每个盘块可以正好存放一个B树的结点(正好存放2个文件名)。那么一个BTNODE结点就代表一个盘块,而子树指针就是存放另外一个盘块的地址。

下面,咱们来模拟下查找文件29的过程:

1.  根据根结点指针找到文件目录的根磁盘块1,将其中的信息导入内存。【磁盘IO操作1次】   

2.  此时内存中有两个文件名17、35和三个存储其他磁盘页面地址的数据。根据算法我们发现:17<29<35,因此我们找到指针p2。

3.  根据p2指针,我们定位到磁盘块3,并将其中的信息导入内存。【磁盘IO操作 2次】   

4.  此时内存中有两个文件名26,30和三个存储其他磁盘页面地址的数据。根据算法我们发现:26<29<30,因此我们找到指针p2。

5.  根据p2指针,我们定位到磁盘块8,并将其中的信息导入内存。【磁盘IO操作 3次】   

6.  此时内存中有两个文件名28,29。根据算法我们查找到文件名29,并定位了该文件内存的磁盘地址。分析上面的过程,发现需要3 3次磁盘IO操作和次磁盘IO操作和3次内存查找 次内存查找操作。关于内存中的文件名查找,由于是一个有序表结构,可以利用折半查找提高效率。至于IO操作是影响整个B树查找效率的决定因素。

插入

想想2-3树的插入。2-3树结点的最大容量是2个元素,故当插入操作造成超出容量之后,就得分裂。同样m-阶B树规定的结点的最大容量是m-1个元素,故当插入操作造成超出容量之后也得分裂,其分裂成两个结点每个结点分m/2个元素。(副作用是在其父结点中要插入一个中间元素,用于分隔这两结点。和2-3树一样,再向父结点插入一个元素也可能会造成父结点的分裂,逐级向上操作,直到不再造成分裂为止。)

向某结点中插入一个元素使其分裂,可能会造成连锁反应,使其之上的结点也可能造成分裂。

总结:在B树中插入关键码key的思路:

对高度为h的m阶B树,新结点一般是插在第h层。通过检索可以确定关键码应插入的结点位置。然后分两种情况讨论:

1、  若该结点中关键码个数小于m-1,则直接插入即可。

2、  若该结点中关键码个数等于m-1,则将引起结点的分裂。以中间关键码为界将结点一分为二,产生一个新结点,并把中间关键码插入到父结点(h-1层)中

重复上述工作,最坏情况一直分裂到根结点,建立一个新的根结点,整个B树增加一层。

【例】

1、下面咱们通过一个实例来逐步讲解下。插入以下字符字母到一棵空的B 树中(非根结点关键字数小了(小于2个)就合并,大了(超过4个)就分裂):C N G A H E K Q M F W L T Z D P R X Y S,首先,结点空间足够,4个字母插入相同的结点中,如下图:

2、当咱们试着插入H时,结点发现空间不够,以致将其分裂成2个结点,移动中间元素G上移到新的根结点中,在实现过程中,咱们把A和C留在当前结点中,而H和N放置新的其右邻居结点中。如下图:

3、当咱们插入E,K,Q时,不需要任何分裂操作

4、插入M需要一次分裂,注意M恰好是中间关键字元素,以致向上移到父节点中

5、插入F,W,L,T不需要任何分裂操作

6、插入Z时,最右的叶子结点空间满了,需要进行分裂操作,中间元素T上移到父节点中,注意通过上移中间元素,树最终还是保持平衡,分裂结果的结点存在2个关键字元素。

7、插入D时,导致最左边的叶子结点被分裂,D恰好也是中间元素,上移到父节点中,然后字母P,R,X,Y陆续插入不需要任何分裂操作(别忘了,树中至多5个孩子)。

8、最后,当插入S时,含有N,P,Q,R的结点需要分裂,把中间元素Q上移到父节点中,但是情况来了,父节点中空间已经满了,所以也要进行分裂,将父节点中的中间元素M上移到新形成的根结点中,注意以前在父节点中的第三个指针在修改后包括D和G节点中。这样具体插入操作的完成,下面介绍删除操作,删除操作相对于插入操作要考虑的情况多点。

删除

首先查找B树中需删除的元素,如果该元素在B树中存在,则将该元素在其结点中进行删除,如果删除该元素后,首先判断该元素是否有左右孩子结点,如果有,则上移孩子结点中的某相近元素(“左孩子最右边的节点”或“右孩子最左边的节点”)到父节点中,然后是移动之后的情况;如果没有,直接删除后,移动之后的情况。

删除元素,移动相应元素之后,如果某结点中元素数目(即关键字数)小于ceil(m/2)-1,则需要看其某相邻兄弟结点是否丰满(结点中元素个数大于ceil(m/2)-1)(还记得第一节中关于B树的第5个特性中的c点么?: c)除根结点之外的结点(包括叶子结点)的关键字的个数n必须满足: (ceil(m / 2)-1)<= n <=m-1。m表示最多含有m个孩子,n表示关键字数。在本小节中举的一颗B树的示例中,关键字数n满足:2<=n<=4),如果丰满,则向父节点借一个元素来满足条件;如果其相邻兄弟都刚脱贫,即借了之后其结点数目小于ceil(m/2)-1,则该结点与其相邻的某一兄弟结点进行“合并”成一个结点,以此来满足条件。那咱们通过下面实例来详细了解吧。

以上述插入操作构造的一棵5阶B树(树中最多含有m(m=5)个孩子,因此关键字数最小为ceil(m/ 2)-1=2。还是这句话,关键字数小了(小于2个)就合并,大了(超过4个)就分裂)为例,依次删除H,T,R,E。

1、首先删除元素H,当然首先查找H,H在一个叶子结点中,且该叶子结点元素数目3大于最小元素数目ceil(m/2)-1=2,则操作很简单,咱们只需要移动K至原来H的位置,移动L至K的位置(也就是结点中删除元素后面的元素向前移动)

2、下一步,删除T,因为T没有在叶子结点中,而是在中间结点中找到,咱们发现他的继承者W(字母升序的下个元素),将W上移到T的位置,然后将原包含W的孩子结点中的W进行删除,这里恰好删除W后,该孩子结点中元素个数大于2,无需进行合并操作。

3、下一步删除R,R在叶子结点中,但是该结点中元素数目为2,删除导致只有1个元素,已经小于最小元素数目ceil(5/2)-1=2,而由前面我们已经知道:如果其某个相邻兄弟结点中比较丰满(元素个数大于ceil(5/2)-1=2),则可以向父结点借一个元素,然后将最丰满的相邻兄弟结点中上移最后或最前一个元素到父节点中(有没有看到红黑树中左旋操作的影子?),在这个实例中,右相邻兄弟结点中比较丰满(3个元素大于2),所以先向父节点借一个元素W下移到该叶子结点中,代替原来S的位置,S前移;然后X在相邻右兄弟结点中上移到父结点中,最后在相邻右兄弟结点中删除X,后面元素前移。

4、最后一步删除E, 删除后会导致很多问题,因为E所在的结点数目刚好达标,刚好满足最小元素个数(ceil(5/2)-1=2),而相邻的兄弟结点也是同样的情况,删除一个元素都不能满足条件,所以需要该节点与某相邻兄弟结点进行合并操作;首先移动父结点中的元素(该元素在两个需要合并的两个结点元素之间)下移到其子结点中,然后将这两个结点进行合并成一个结点。所以在该实例中,咱们首先将父节点中的元素D下移到已经删除E而只有F的结点中,然后将含有D和F的结点和含有A,C的相邻兄弟结点进行合并成一个结点。

5、也许你认为这样删除操作已经结束了,其实不然,在看看上图,对于这种特殊情况,你立即会发现父节点只包含一个元素G,没达标(因为非根节点包括叶子结点的关键字数n必须满足于2=

为了进一步详细讨论删除的情况,再举另外一个实例:

这里是一棵不同的5序B树,那咱们试着删除C

于是将删除元素C的右子结点中的D元素上移到C的位置,但是出现上移元素后,只有一个元素的结点的情况。

又因为含有E的结点,其相邻兄弟结点才刚脱贫(最少元素个数为2),不可能向父节点借元素,所以只能进行合并操作,于是这里将含有A,B的左兄弟结点和含有E的结点进行合并成一个结点。

这样又出现只含有一个元素F结点的情况,这时,其相邻的兄弟结点是丰满的(元素个数为3>最小元素个数2),这样就可以想父结点借元素了,把父结点中的J下移到该结点中,相应的如果结点中J后有元素则前移,然后相邻兄弟结点中的第一个元素(或者最后一个元素)上移到父节点中,后面的元素(或者前面的元素)前移(或者后移);注意含有K,L的结点以前依附在M的左边,现在变为依附在J的右边。这样每个结点都满足B树结构性质。

从以上操作可看出:除根结点之外的结点(包括叶子结点)的关键字的个数n满足:(ceil(m / 2)-1)<= n <= m-1,即2<=n<=4。这也佐证了咱们之前的观点。删除操作完。

总结:

(1、关于B树中指针的表示。指针就是线索,是为了指示你找到目标。在内存中用内存的线性地址表示,在磁盘上,用磁盘的柱面和磁道号表示。

(2、B树也是一种文件组织形式。它与OS文件系统的区别是,文件系统是面向磁盘上各种应用的文件的,所有文件的索引都被组织在一个系统文件表中。这样,一个相关应用的文件之间就没有体现有序性,我们对某组相关的文件进行查找,效率就会较低。  而B树是专门对某组相关的文件进行组织,使其之间相对有序,提高查找效率。 --尤其是对于需要频繁查找访问文件的操作。

例如: 对10亿个有序数,其分布在1000个文件中。普通的查找(类2分查找),和构造一个B树,普通的二分查找不仅需要多次访问文件,且其通过OS的文件系统通过文件名来访问文件,这样效率低——OS需要在整张系统文件表中通过文件名查找文件。  而B树,其是多叉树,树的深度比二分树要小很多,需要查找的文件比二分查找需要的少。且其通过自己建立的B树来索引文件(每次查找文件都通过该B树得到文件在磁盘上的位置)。B树是独立于OS的文件系统的,它中的每个文件都有相应的磁盘位置,而不仅是文件名。

转载链接:http://blog.csdn.net/yang_yulei/article/details/26104921

转载于:https://www.cnblogs.com/atai/p/8506143.html

你可能感兴趣的:([转]B树(多向平衡查找树)详解)