Keras构建回归神经网络
1.导入模块并创建数据
import numpy as np from keras.models import Sequential from keras.layers import Dense import matplotlib.pyplot as plt #构建数据 X = np.linspace(-1, 1, 200) np.random.shuffle(X) Y = 0.5 * X + 2 + np.random.normal(0, 0.05, (200, )) plt.scatter(X, Y) plt.show() X_train, Y_train = X[:160], Y[:160] # train 前 160 data points X_test, Y_test = X[160:], Y[160:] # test 后 40 data points
2.建立模型
#建立模型 #用Sequential 建立model, 再用model.add添加神经层,添加的是dense全连接层 model = Sequential() #回归的的输入和输出都为1 model.add(Dense(input_dim = 1, output_dim = 1))
3.激活模型
#激活模型 #误差用mse, 优化器用随机梯度下降 model.compile(loss='mse', optimizer='sgd')
4.训练模型
#训练模型 print('train=========') for step in range(301): cost = model.train_on_batch(X_train, Y_train) if step % 100 ==0: print('train cost: ', cost) """ train========= ('train cost: ', 4.3885427) ('train cost: ', 0.21306995) ('train cost: ', 0.039464761) ('train cost: ', 0.01153493) """
5.检验模型
#测试模型 #model.evaluate,输入测试集的x和y, 输出 cost,weights 和 biases #其中 weights 和 biases 是取在模型的第一层 model.layers[0] 学习到的参数。 print('\nTesting ------------') cost = model.evaluate(X_test, Y_test, batch_size=40) print('test cost: ', cost) W, b = model.layers[0].get_weights() print('Weights=', W, '\nbiases=', b) """ Testing ------------ 40/40 [==============================] - 0s ('test cost: ', 0.011480952613055706) ('Weights=', array([[ 0.33378708]], dtype=float32), 'biases=', array([ 1.98737764], dtype=float32)) """
6.可视化结果
# plotting the prediction Y_pred = model.predict(X_test) plt.scatter(X_test, Y_test) plt.plot(X_test, Y_pred) plt.show()