Python中单线程、多线程和多进程的效率对比实验


title: Python中单线程、多线程与多进程的效率对比实验
date: 2016-09-30 07:05:47
tags: [多线程,多进程,Python]
categories: [Python]

meta: Python中多线程和多进程的对比

Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多进程(Thread)的情况下,不能发挥多核的优势。而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率。
对比实验

资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。所以我们根据实验对比不同场景的效率

操作系统 CPU 内存 硬盘
Windows 10 双核 8GB 机械硬盘

(1)引入所需要的模块
import requests
import time
from threading import Thread
from multiprocessing import Process
(2)定义CPU密集的计算函数
def count(x, y):
    # 使程序完成50万计算
    c = 0
    while c < 500000:
        c += 1
        x += x
        y += y
(3)定义IO密集的文件读写函数
def write():
    f = open("test.txt", "w")
    for x in range(5000000):
        f.write("testwrite\n")
    f.close()

def read():
    f = open("test.txt", "r")
    lines = f.readlines()
    f.close()
(4) 定义网络请求函数
_head = {
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/48.0.2564.116 Safari/537.36'}
url = "http://www.tieba.com"
def http_request():
    try:
        webPage = requests.get(url, headers=_head)
        html = webPage.text
        return {"context": html}
    except Exception as e:
        return {"error": e}
(5)测试线性执行IO密集操作、CPU密集操作所需时间、网络请求密集型操作所需时间
# CPU密集操作
t = time.time()
for x in range(10):
    count(1, 1)
print("Line cpu", time.time() - t)

# IO密集操作
t = time.time()
for x in range(10):
    write()
    read()
print("Line IO", time.time() - t)

# 网络请求密集型操作
t = time.time()
for x in range(10):
    http_request()
print("Line Http Request", time.time() - t)
输出
CPU密集 95.6059999466 91.57099986076355 92.52800011634827 99.96799993515015
IO密集 24.25 21.76699995994568 21.769999980926514 22.060999870300293
网络请求密集型 4.519999980926514 8.563999891281128 4.371000051498413 14.671000003814697
(6)测试多线程并发执行CPU密集操作所需时间
counts = []
t = time.time()
for x in range(10):
    thread = Thread(target=count, args=(1,1))
    counts.append(thread)
    thread.start()

while True:
    e = len(counts)
    for th in counts:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print(time.time() - t)
output
99.9240000248
101.26400017738342
102.32200002670288
(7)测试多线程并发执行IO密集操作所需时间
def io():
    write()
    read()

t = time.time()
ios = []
t = time.time()
for x in range(10):
    thread = Thread(target=count, args=(1,1))
    ios.append(thread)
    thread.start()


while True:
    e = len(ios)
    for th in ios:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print(time.time() - t)
Output
25.69700002670288
24.02400016784668
(8)测试多线程并发执行网络密集操作所需时间
t = time.time()
ios = []
t = time.time()
for x in range(10):
    thread = Thread(target=http_request)
    ios.append(thread)
    thread.start()

while True:
    e = len(ios)
    for th in ios:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print("Thread Http Request", time.time() - t)
Output
0.7419998645782471
0.3839998245239258
0.3900001049041748
(9)测试多进程并发执行CPU密集操作所需时间
counts = []
t = time.time()
for x in range(10):
    process = Process(target=count, args=(1,1))
    counts.append(process)
    process.start()

while True:
    e = len(counts)
    for th in counts:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print("Multiprocess cpu", time.time() - t)
Output
54.342000007629395
53.437999963760376
(10)测试多进程并发执行IO密集型操作
t = time.time()
ios = []
t = time.time()
for x in range(10):
    process = Process(target=io)
    ios.append(process)
    process.start()


while True:
    e = len(ios)
    for th in ios:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print("Multiprocess IO", time.time() - t)
Output
12.509000062942505
13.059000015258789
(11)测试多进程并发执行Http请求密集型操作
t = time.time()
httprs = []
t = time.time()
for x in range(10):
    process = Process(target=http_request)
    ios.append(process)
    process.start()

while True:
    e = len(httprs)
    for th in httprs:
        if not th.is_alive():
            e -= 1
    if e <= 0:
        break
print("Multiprocess Http Request", time.time() - t)

|Output|
|0.5329999923706055|
|0.4760000705718994|


实验结果
CPU密集型操作 IO密集型操作 网络请求密集型操作
线性操作 94.91824996469 22.46199995279 7.3296000004
多线程操作 101.1700000762 24.8605000973 0.5053332647
多进程操作 53.8899999857 12.7840000391 0.5045000315

通过上面的结果,我们可以看到:

  • 多线程在IO密集型的操作下似乎也没有很大的优势(也许IO操作的任务再繁重一些就能体现出优势),在CPU密集型的操作下明显地比单线程线性执行性能更差,但是对于网络请求这种忙等阻塞线程的操作,多线程的优势便非常显著了
  • 多进程无论是在CPU密集型还是IO密集型以及网络请求密集型(经常发生线程阻塞的操作)中,都能体现出性能的优势。不过在类似网络请求密集型的操作上,与多线程相差无几,但却更占用CPU等资源,所以对于这种情况下,我们可以选择多线程来执行

Python中单线程、多线程和多进程的效率对比实验_第1张图片


此文为1年随手写的,多谢评论区指出谬误,因数据是平均数,影响不大,故未做修改

你可能感兴趣的:(Python中单线程、多线程和多进程的效率对比实验)