摄像机标定是机器人视觉进行目标定位跟踪的首要环节,通过标定板标定好摄像机的内外参数,将参数返回给摄像机,然后进行后续的定位识别工作。
下面是利用python语言结合OpenCV进行摄像机标定的代码:
import cv2
import numpy as np
import glob
# 设置寻找亚像素角点的参数,采用的停止准则是最大循环次数30和最大误差容限0.001
criteria = (cv2.TERM_CRITERIA_MAX_ITER | cv2.TERM_CRITERIA_EPS, 30, 0.001)
# 获取标定板角点的位置(9*6分别为竖着的畸变点和横向的畸变点)
objp = np.zeros((9*6,3), np.float32)
objp[:,:2] = np.mgrid[0:9,0:6].T.reshape(-1,2) # 将世界坐标系建在标定板上,所有点的Z坐标全部为0,所以只需要赋值x和y
obj_points = [] # 存储3D点
img_points = [] # 存储2D点
images = glob.glob("img\jibian1.jpeg")
for fname in images:
img = cv2.imread(fname)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
size = gray.shape[::-1]
print('size')
print(size)
ret, corners = cv2.findChessboardCorners(gray, (9,6), None)
print(ret)
print(corners)
if ret:
obj_points.append(objp)
corners2 = cv2.cornerSubPix(gray, corners, (5,5), (-1,-1), criteria) # 在原角点的基础上寻找亚像素角点
if corners2.any():
img_points.append(corners2)
else:
img_points.append(corners)
cv2.drawChessboardCorners(img, (9,6), corners, ret) # 记住,OpenCV的绘制函数一般无返回值
cv2.imshow('img', img)
cv2.waitKey(500000)
print(len(img_points))
cv2.destroyAllWindows()
# 标定
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points,size, None, None)
print("ret:",ret)
print("mtx:\n",mtx ) # 内参数矩阵
print("dist:\n",dist ) # 畸变系数 distortion cofficients = (k_1,k_2,p_1,p_2,k_3)
print("rvecs:\n",rvecs ) # 旋转向量 # 外参数
print("tvecs:\n",tvecs) # 平移向量 # 外参数
print("-----------------------------------------------------")
# 畸变校正
img = cv2.imread(images[0])
h, w = img.shape[:2]
newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx,dist,(w,h),1,(w,h))
print(newcameramtx)
print("------------------使用undistort函数-------------------")
dst = cv2.undistort(img,mtx,dist,None,newcameramtx)
x,y,w,h = roi
dst1 = dst[y:y+h,x:x+w]
cv2.imwrite('calibresult11.jpg', dst1)
print("方法一:dst的大小为:", dst1.shape)
# undistort方法二
print("-------------------使用重映射的方式-----------------------")
mapx,mapy = cv2.initUndistortRectifyMap(mtx,dist,None,newcameramtx,(w,h),5) # 获取映射方程
#dst = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR) # 重映射
dst = cv2.remap(img,mapx,mapy,cv2.INTER_CUBIC) # 重映射后,图像变小了
x,y,w,h = roi
dst2 = dst[y:y+h,x:x+w]
cv2.imwrite('calibresult11_2.jpg', dst2)
print("方法二:dst的大小为:", dst2.shape) # 图像比方法一的小
print("-------------------计算反向投影误差-----------------------")
tot_error = 0
for i in range(len(obj_points)):
img_points2, _ = cv2.projectPoints(obj_points[i],rvecs[i],tvecs[i],mtx,dist)
error = cv2.norm(img_points[i],img_points2, cv2.NORM_L2)/len(img_points2)
tot_error += error
mean_error = tot_error/len(obj_points)
print("total error: ", tot_error)
print("mean error: ", mean_error)
cv2.waitKey(0)
http://blog.csdn.net/firemicrocosm/article/details/48594897