思路:
设,当前点x(i,j)为终点的最长递增路径长度为f(x(i,j));
则,当前点的上下左右节点为终点的最长递增路径长度分别为f(x(i-1,j)), f(x(I+1,j)), f(x(i,j-1)), f(x(i,j+1));
此时,如果当前节点的值大于上下左右节点的值,则以当前节点为终点,上一步沿上下左右节点走向当前节点的递增路径长度依次为:
up=f(x(i-1,j))+1,
down=f(x(I+1,j))+1,
left= f(x(i,j-1))+1,
right= f(x(i,j+1))+1;
如果当前节点的值不大于上下左右节点的值,则up,down,left,right的值为1。
最终,f(x(i,j)) = max(up, down, left, right)。
举例:
1 2 3
4 5 6
其中,
1为终点的最长递增路径为:1,长度为1;
2为终点的最长递增路径为:1-2,长度为2;
3为终点的最长递增路径为:1-2-3,长度为3;
4为终点的最长递增路径为:1-4,长度为2;
5为终点的最长递增路径为:1-4-5,长度为3;
6为终点的最长递增路径为:1-4-5-6,长度为4;
代码:
int LongIncPath(vector>& a, vector>& dp, int i, int j){
int col = (int)a[0].size();
int row = (int)a.size();
if (dp[i][j] != 0) {
return dp[i][j];
}
// 左右上下
int l=1, r=1, u=1, d=1;
if (j>0 && a[i][j]>a[i][j-1]) {
l = 1+LongIncPath(a, dp, i, j-1);
}
if (ja[i][j+1]) {
r = 1+LongIncPath(a, dp, i, j+1);
}
if (i>0 && a[i][j]>a[i-1][j]) {
u = 1+LongIncPath(a, dp, i-1, j);
}
if (ia[i+1][j]) {
d = 1+LongIncPath(a, dp, i+1, j);
}
dp[i][j] = max(max(l,r),max(u,d));
return dp[i][j];
}
int main() {
vector> a(2);
for (int i= 0; i < a.size(); i++) {
a[i].resize(3);
}
for (int i=0; i < a.size(); i++) {
for (int j=0; j < a[0].size(); j++) {
a[i][j] = i*(int)a[0].size() + j + 1;
}
}
vector d(a[0].size(), 0);
vector> dp(a.size(), d);
int col = (int)a[0].size();
int row = (int)a.size();
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
if (dp[i][j] != 0) {
continue;
}
else {
dp[i][j] = LongIncPath(a, dp, i, j);
}
cout << i << " " << j << " is " << a[i][j] << ", deep path is " << dp[i][j] << endl;
}
}
}
输出结果:
0 0 is 1, deep path is 1
0 1 is 2, deep path is 2
0 2 is 3, deep path is 3
1 0 is 4, deep path is 2
1 1 is 5, deep path is 3
1 2 is 6, deep path is 4