ThreadLocal 源码解析

 ThreadLocal.ThreadLocalMap threadLocals = null;

/**
 * 设置当前线程对应的ThreadLocal的值
 */
public void set(T value) {
        // 获取当前的线程对象
        Thread t = Thread.currentThread();
        // 获取此线程对象中维护的ThreadLocalMap对象
        ThreadLocalMap map = getMap(t);
       // 判断map是否存在
        if (map != null)
           // 设置当前线程的Entry
            map.set(this, value);
        else
            // 将当前线程t 和 value(t对应的值)作为第一个entry存放到ThreadLocalMap中
            createMap(t, value);
}
/**
 * 获取当前线程Thread对应维护的TreadLocalMap
 */
ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
}

/**
 * 创建当前线程Thread对应维护的ThreadLocalMap
 * t 当前线程
 * firstValue 存放到map中第一个entry的值
 */
void createMap(Thread t, T firstValue) {
        // this 是调用此方法的threadLocal
        t.threadLocals = new ThreadLocalMap(this, firstValue);
}
  1.  首先获取当前线程,并根据当前线程获取一个Map
  2. 若获取的Map 不为空, 则将参数设置到Map中 (当前ThreadLocal的引用作为key)
  3. 若Map为空,则给该线程创建Map 并设置初始值

  

  返回当前线程对应此ThreadLocal的值

/**
 * 返回当前线程中保存ThreadLocal的值
 * 若当前线程没有此ThreadLocal变量,则调用 #setInitialValue() 方法进行初始化
 */
public T get() {
        // 获取当前线程对象
        Thread t = Thread.currentThread();
        // 获取当前线程中对应的ThreadLocalMap对象
        ThreadLocalMap map = getMap(t);
        // 若map存在
        if (map != null) {
            // 根据当前ThreadLocal为key,调用getEntry 获取对应存放的实体e
            ThreadLocalMap.Entry e = map.getEntry(this);
            if (e != null) {
                @SuppressWarnings("unchecked")
                // 获取存储实体e 对应的 value
                // 即 当前线程对应ThreadLocal的值
                T result = (T)e.value;
                return result;
            }
        }
        /**
         * 初始化:
         * 1. map中不存在,标识当前线程没有维护ThreadLocalMap对象
         * 2. map存在,但是没有与当前ThreadLocal关联的entry
         */
        return setInitialValue();
}

ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
}

/**
 * 初始化
 *
 */
private T setInitialValue() {
        // 调用initualValue 获取初始化的值
        // 此方法可以被子类重写,如果不重写默认返回null 
        T value = initialValue();
        // 获取当前线程对象
        Thread t = Thread.currentThread();
        // 获取当前线程对象中维护的ThreadLocalMap 对象 
        ThreadLocalMap map = getMap(t);
        // 判断map是否存在
        if (map != null)
            map.set(this, value);
        else
            /**
             * 创建Map
             * 1. 当前线程,没有ThreadLocalMap对象
             *    则调用 createMap进行ThreadLocalMap对象进行初始化 
             *    将当前线程 t 和 value (t 对应的值)作为第一个entry 存放至ThreadLocalMap中
             */
            createMap(t, value);
        return value;
}

protected T initialValue() {
    return null;
}

   先获取当前线程的ThreadLocalMap变量, 若存在则返回值, 不存在则初始化创建一个并发回值

 

/**
 * 移除当前线程中保存ThreadLocal的entry 的实体
 */ 
public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)
             m.remove(this);
}
/**
   初始化当前线程对应的ThreadLocal的初值
   
   如果要修改ThreadLocalMap线程局部变量一个除null以外的初始值
   可以通过子类继承 ThreadLocal 的方式来重写 initialValue() 方法
   通常,可以通过匿名内部类的方式实现
 */
protected T initialValue() {
        return null;
}

该方法是用 protected (同包或不同包的子类可重写) 就行修饰的, 显然是让子类覆盖而设计的.

 

ThreadLocalMap解析: 

  
static class ThreadLocalMap {

        /**
         * Entry 继承 WeakReference, 并且用ThreadLocal作为key
         * 
         * 如果key为null  ( entry.get() == null) ,意味着key不再被引用
         * 因此这个时候的entry也可以从table中清楚
         */
        static class Entry extends WeakReference> {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal k, Object v) {
                super(k);
                value = v;
            }
        }

        /**
         * 初始化容量 -- 必须是2的整次幂
         */
        private static final int INITIAL_CAPACITY = 16;

        /**
         * 存放数据table,
         * 数组长度必须是2的整次幂
         */
        private Entry[] table;

        /**
         * The number of entries in the table.
         */
        private int size = 0;

        /**
         * 扩容的阈值, 大于threshold 的时候进行扩容
         */
        private int threshold; // Default to 0

        /**
         * Set the resize threshold to maintain at worst a 2/3 load factor.
         */
        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }

        /**
         * Increment i modulo len.
         */
        private static int nextIndex(int i, int len) {
            return ((i + 1 < len) ? i + 1 : 0);
        }

        /**
         * Decrement i modulo len.
         */
        private static int prevIndex(int i, int len) {
            return ((i - 1 >= 0) ? i - 1 : len - 1);
        }

        /**
         * Construct a new map initially containing (firstKey, firstValue).
         * ThreadLocalMaps are constructed lazily, so we only create
         * one when we have at least one entry to put in it.
         */
        ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }

        /**
         * Construct a new map including all Inheritable ThreadLocals
         * from given parent map. Called only by createInheritedMap.
         *
         * @param parentMap the map associated with parent thread.
         */
        private ThreadLocalMap(ThreadLocalMap parentMap) {
            Entry[] parentTable = parentMap.table;
            int len = parentTable.length;
            setThreshold(len);
            table = new Entry[len];

            for (int j = 0; j < len; j++) {
                Entry e = parentTable[j];
                if (e != null) {
                    @SuppressWarnings("unchecked")
                    ThreadLocal key = (ThreadLocal) e.get();
                    if (key != null) {
                        Object value = key.childValue(e.value);
                        Entry c = new Entry(key, value);
                        int h = key.threadLocalHashCode & (len - 1);
                        while (table[h] != null)
                            h = nextIndex(h, len);
                        table[h] = c;
                        size++;
                    }
                }
            }
        }

        /**
         * Get the entry associated with key.  This method
         * itself handles only the fast path: a direct hit of existing
         * key. It otherwise relays to getEntryAfterMiss.  This is
         * designed to maximize performance for direct hits, in part
         * by making this method readily inlinable.
         *
         * @param  key the thread local object
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntry(ThreadLocal key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }

        /**
         * Version of getEntry method for use when key is not found in
         * its direct hash slot.
         *
         * @param  key the thread local object
         * @param  i the table index for key's hash code
         * @param  e the entry at table[i]
         * @return the entry associated with key, or null if no such
         */
        private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }

        /**
         * Set the value associated with key.
         *
         * @param key the thread local object
         * @param value the value to be set
         */
        private void set(ThreadLocal key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal k = e.get();

                if (k == key) {
                    e.value = value;
                    return;
                }

                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

        /**
         * Remove the entry for key.
         */
        private void remove(ThreadLocal key) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                if (e.get() == key) {
                    e.clear();
                    expungeStaleEntry(i);
                    return;
                }
            }
        }

        /**
         * Replace a stale entry encountered during a set operation
         * with an entry for the specified key.  The value passed in
         * the value parameter is stored in the entry, whether or not
         * an entry already exists for the specified key.
         *
         * As a side effect, this method expunges all stale entries in the
         * "run" containing the stale entry.  (A run is a sequence of entries
         * between two null slots.)
         *
         * @param  key the key
         * @param  value the value to be associated with key
         * @param  staleSlot index of the first stale entry encountered while
         *         searching for key.
         */
        private void replaceStaleEntry(ThreadLocal key, Object value,
                                       int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;
            Entry e;

            // Back up to check for prior stale entry in current run.
            // We clean out whole runs at a time to avoid continual
            // incremental rehashing due to garbage collector freeing
            // up refs in bunches (i.e., whenever the collector runs).
            int slotToExpunge = staleSlot;
            for (int i = prevIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = prevIndex(i, len))
                if (e.get() == null)
                    slotToExpunge = i;

            // Find either the key or trailing null slot of run, whichever
            // occurs first
            for (int i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();

                // If we find key, then we need to swap it
                // with the stale entry to maintain hash table order.
                // The newly stale slot, or any other stale slot
                // encountered above it, can then be sent to expungeStaleEntry
                // to remove or rehash all of the other entries in run.
                if (k == key) {
                    e.value = value;

                    tab[i] = tab[staleSlot];
                    tab[staleSlot] = e;

                    // Start expunge at preceding stale entry if it exists
                    if (slotToExpunge == staleSlot)
                        slotToExpunge = i;
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                    return;
                }

                // If we didn't find stale entry on backward scan, the
                // first stale entry seen while scanning for key is the
                // first still present in the run.
                if (k == null && slotToExpunge == staleSlot)
                    slotToExpunge = i;
            }

            // If key not found, put new entry in stale slot
            tab[staleSlot].value = null;
            tab[staleSlot] = new Entry(key, value);

            // If there are any other stale entries in run, expunge them
            if (slotToExpunge != staleSlot)
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
        }

        /**
         * Expunge a stale entry by rehashing any possibly colliding entries
         * lying between staleSlot and the next null slot.  This also expunges
         * any other stale entries encountered before the trailing null.  See
         * Knuth, Section 6.4
         *
         * @param staleSlot index of slot known to have null key
         * @return the index of the next null slot after staleSlot
         * (all between staleSlot and this slot will have been checked
         * for expunging).
         */
        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            // expunge entry at staleSlot
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }

        /**
         * Heuristically scan some cells looking for stale entries.
         * This is invoked when either a new element is added, or
         * another stale one has been expunged. It performs a
         * logarithmic number of scans, as a balance between no
         * scanning (fast but retains garbage) and a number of scans
         * proportional to number of elements, that would find all
         * garbage but would cause some insertions to take O(n) time.
         *
         * @param i a position known NOT to hold a stale entry. The
         * scan starts at the element after i.
         *
         * @param n scan control: {@code log2(n)} cells are scanned,
         * unless a stale entry is found, in which case
         * {@code log2(table.length)-1} additional cells are scanned.
         * When called from insertions, this parameter is the number
         * of elements, but when from replaceStaleEntry, it is the
         * table length. (Note: all this could be changed to be either
         * more or less aggressive by weighting n instead of just
         * using straight log n. But this version is simple, fast, and
         * seems to work well.)
         *
         * @return true if any stale entries have been removed.
         */
        private boolean cleanSomeSlots(int i, int n) {
            boolean removed = false;
            Entry[] tab = table;
            int len = tab.length;
            do {
                i = nextIndex(i, len);
                Entry e = tab[i];
                if (e != null && e.get() == null) {
                    n = len;
                    removed = true;
                    i = expungeStaleEntry(i);
                }
            } while ( (n >>>= 1) != 0);
            return removed;
        }

        /**
         * Re-pack and/or re-size the table. First scan the entire
         * table removing stale entries. If this doesn't sufficiently
         * shrink the size of the table, double the table size.
         */
        private void rehash() {
            expungeStaleEntries();

            // Use lower threshold for doubling to avoid hysteresis
            if (size >= threshold - threshold / 4)
                resize();
        }

        /**
         * Double the capacity of the table.
         */
        private void resize() {
            Entry[] oldTab = table;
            int oldLen = oldTab.length;
            int newLen = oldLen * 2;
            Entry[] newTab = new Entry[newLen];
            int count = 0;

            for (int j = 0; j < oldLen; ++j) {
                Entry e = oldTab[j];
                if (e != null) {
                    ThreadLocal k = e.get();
                    if (k == null) {
                        e.value = null; // Help the GC
                    } else {
                        int h = k.threadLocalHashCode & (newLen - 1);
                        while (newTab[h] != null)
                            h = nextIndex(h, newLen);
                        newTab[h] = e;
                        count++;
                    }
                }
            }

            setThreshold(newLen);
            size = count;
            table = newTab;
        }

        /**
         * Expunge all stale entries in the table.
         */
        private void expungeStaleEntries() {
            Entry[] tab = table;
            int len = tab.length;
            for (int j = 0; j < len; j++) {
                Entry e = tab[j];
                if (e != null && e.get() == null)
                    expungeStaleEntry(j);
            }
        }
    } 
  

ThreadLocalMap : 是 ThreadLocal 的内部类, 自己内部实现了一个Map, 并没有实现java.util.Map接口; 内部的Entry也是独立实现的

在ThreadLocalMap中,也是用Entry来保存 k-v数据结构. 不过Entry中的key只能是ThreadLocal对象,这点在构造器已经限制死了.

Entry继承了 WeakReference,也就是key(ThreadLocal)是弱引用的. 器目的是将threadLocal的生命周期和线程生命周期解绑

 

 

你可能感兴趣的:(java)