RSM 学习笔记

*欢迎转载,请注明出处*

Note Author : yanbin chen

Email: [email protected] 

 

Reference:

1.Advanced Signal integrity for High Speed Digital Design.  Stephen H.HALL Howard L.Heck

2.JMP help.

 

The response surface modeling (RSM) technique provides a tool that gives us the ability to model the behavior of our signaling system as the circuit and interconnect characteristics vary.

RSM works by fitting a statistical model of the output response as a function of changes in the input variables. 

 

The general form of the response surface model is

y is the system response. β is the model fit coefficients. x is the system input.

It is highly flexible, allowing to fit curved response surface by using higher-order combinations of input variables. In general ,second-order models are sufficient for high-speed signaling links.

§Step1 :get the system input and response matrix . Update it to 2nd-order matrix.

RSM 学习笔记_第1张图片

Input variable number is 5

The number of terms in the second-order model , k , is

 

1+2*5+5(5-1)/2=21

print (len(Doe_Var))

print (Doe_Var)

§Step2 :Norm the matrix.

Rather than use the raw data, regression tool usually fit the model to a transformed version of data.

2 kinds of normalization.

A: normalization. B: Round normalization.

Column1:     original matrix X [constant x1 x2 x3 … x1x1 x1x2  x1x3 … xnxn]

Cloumn2 :    mat_N_X[:,1:]=2*(mat_X[:,1:]-mat_X[:,1:].mean(0))/(np.ptp(mat_X[:,1:],axis=0)) # Normalized X

Cloumn3 :    mat_N_X[:,1:]=np.around(2*(mat_X[:,1:]-mat_X[:,1:].mean(0))/(np.ptp(mat_X[:,1:],axis=0))) # Round Normalized X

RSM 学习笔记_第2张图片

§Step3 :Regression analysis.

MMSE click another article..

https://blog.csdn.net/yanbin_c/article/details/84504273

RSM 学习笔记_第3张图片

Conclusion : The result shows normalized x is better than Round Normalized X in regression.

Why?Because our DOE table is not orthogonal array.

§Step4 :Measures of Fit.

Advanced signal integrity  for High speed digital design -Section 14.4 page (615-618 )

Residuals vector / standard residual/R-square/R-square_adj/RMSE

RSM 学习笔记_第4张图片

RSM 学习笔记_第5张图片

RSM 学习笔记_第6张图片

§Step5 :Significant test. / Stepwise regression.

Model significance : the F-Test

Parameter significance : Individual t-Tests

the result fit well.

one key point. Expand JMP polynomial expressions in Mathematica

 

RSM 学习笔记_第7张图片

 

RSM 学习笔记_第8张图片

 

 

 

你可能感兴趣的:(RSM 学习笔记)