目录
共享锁
CountDownLatch
作用:
构造函数
内部类Sync
countDown
await
CycliBarrier
作用:
属性:
构造器:
打破栅栏
开启下一代
await
Semaphore
作用:
构造函数
请求资源:
释放资源:
上面介绍的都是独占锁,下面介绍共享锁
将大任务分成各个子任务 主线程等待所有子任务执行完毕;最后一个子任务线程负责唤醒所有在阻塞队列中的主线程
//唯一的一个构造函数
//看过CountDownLatch内部类Sync 的构造函数 就会知道 count值直接设置到了锁状态上
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
//还是 继承自 AbstractQueuedSynchronizer
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;
Sync(int count) {
setState(count);
}
int getCount() {
return getState();
}
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}
public void countDown() {
sync.releaseShared(1);
}
位置:AbstractQueuedSynchronizer 1340
方法目的:将共享锁的 锁状态 减去 arg值
方法流程:
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
//如果走到这里说明 锁状态 为 0 要去唤醒在阻塞队列中的线程了
doReleaseShared();
return true;
}
return false;
}
位置:CountDownLatch 176
方法目的:
方法流程:自旋将锁状态 减去 releases 值
返回锁状态值 是否等于 0
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
位置:AbstractQueuedSynchronizer 670
方法目的:
方法流程:
这里抛出一个疑问,上面独占锁的时候,把head的后继节点唤醒之后,后继变成了head 那么是怎么唤醒新head的后继节点呢? 其实就是每次unlock的时候
唤醒 head的后继 那么这里呢共享锁怎么唤醒后继呢?递归
private void doReleaseShared() {
/*
* Ensure that a release propagates, even if there are other
* in-progress acquires/releases. This proceeds in the usual
* way of trying to unparkSuccessor of head if it needs
* signal. But if it does not, status is set to PROPAGATE to
* ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added
* while we are doing this. Also, unlike other uses of
* unparkSuccessor, we need to know if CAS to reset status
* fails, if so rechecking.
*/
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
//如果 h是头结点了
if (h == head) // loop if head changed
break;
}
}
位置:CountDownLatch 230
方法目的: 如果共享锁状态 不为0 也就是 子任务没有执行完 那么线程需要挂起 唤醒之后 递归唤醒所有阻塞队列中的线程
方法流程:
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
位置:AbstractQueuedSynchronizer 1299
方法目的:
方法流程:
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
位置:CountDownLatch 172
方法目的:判断共享锁是否完全释放
方法流程:
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
位置:AbstractQueuedSynchronizer 980
方法目的:
方法流程:
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
//将 节点加入到阻塞队列 和独占锁的进入阻塞队列一样 只是这里标识为共享模式
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
//这一步和独占锁有所不一样 设置新头结点的同时 递归释放 后继
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
位置:AbstractQueuedSynchronizer 708
方法目的:设置头结点并 唤醒后继节点
方法流程:
private void setHeadAndPropagate(Node node, int propagate) {
Node h = head; // Record old head for check below
setHead(node);
/*
* Try to signal next queued node if:
* Propagation was indicated by caller,
* or was recorded (as h.waitStatus either before
* or after setHead) by a previous operation
* (note: this uses sign-check of waitStatus because
* PROPAGATE status may transition to SIGNAL.)
* and
* The next node is waiting in shared mode,
* or we don't know, because it appears null
*
* The conservatism in both of these checks may cause
* unnecessary wake-ups, but only when there are multiple
* racing acquires/releases, so most need signals now or soon
* anyway.
*/
if (propagate > 0 || h == null || h.waitStatus < 0 ||
(h = head) == null || h.waitStatus < 0) {
Node s = node.next;
if (s == null || s.isShared())
doReleaseShared();
}
}
可重复使用的栅栏,上面CountDownLatch只能使用一次,是基于AQS共享模式写的。
CycliBarrier是可以重复使用 是利用Condition写的
public class CyclicBarrier {
/**
* Each use of the barrier is represented as a generation instance.
* The generation changes whenever the barrier is tripped, or
* is reset. There can be many generations associated with threads
* using the barrier - due to the non-deterministic way the lock
* may be allocated to waiting threads - but only one of these
* can be active at a time (the one to which {@code count} applies)
* and all the rest are either broken or tripped.
* There need not be an active generation if there has been a break
* but no subsequent reset.
*/
//栅栏是可以重复使用的 这里可以叫做代 或者 周期
private static class Generation {
boolean broken = false;
}
/** The lock for guarding barrier entry */
private final ReentrantLock lock = new ReentrantLock();
//基于Condition 也就是条件
private final Condition trip = lock.newCondition();
//参与线程数
private final int parties;
//线程都到栅栏后 需要执行的任务
private final Runnable barrierCommand;
//当前这一代
private Generation generation = new Generation();
/**
* Number of parties still waiting. Counts down from parties to 0
* on each generation. It is reset to parties on each new
* generation or when broken.
*/
//还没有到达栅栏的线程数
//到达栅栏的线程数 = parties - count
private int count;
//第一个参数指定栅栏 需要等几个线程都到栅栏后 才能继续执行
//第二个参数是指定 线程都到栅栏后需要执行的任务
public CyclicBarrier(int parties, Runnable barrierAction) {
if (parties <= 0) throw new IllegalArgumentException();
this.parties = parties;
this.count = parties;
this.barrierCommand = barrierAction;
}
//需要等几个线程都到栅栏后 才能继续执行
public CyclicBarrier(int parties) {
this(parties, null);
}
private void breakBarrier() {
//栅栏打破状态 设置为 true
generation.broken = true;
//重置count
count = parties;
//唤醒栅栏中所有线程(条件队列中的线程)
trip.signalAll();
}
private void nextGeneration() {
// signal completion of last generation
//唤醒所有的线程
trip.signalAll();
// set up next generation
//初始化
count = parties;
generation = new Generation();
}
位置:CyclicBarrier 360
方法目的:
方法流程:
public int await() throws InterruptedException, BrokenBarrierException {
try {
return dowait(false, 0L);
} catch (TimeoutException toe) {
throw new Error(toe); // cannot happen
}
}
位置:CyclicBarrier 198
方法目的:
方法流程:
private int dowait(boolean timed, long nanos)
throws InterruptedException, BrokenBarrierException,
TimeoutException {
final ReentrantLock lock = this.lock;
//加锁
lock.lock();
try {
final Generation g = generation;
//如果栅栏”破”了 抛出异常
if (g.broken)
throw new BrokenBarrierException();
//如果线程中断了 打破 栅栏
if (Thread.interrupted()) {
breakBarrier();
throw new InterruptedException();
}
int index = --count;
//如果 线程都到达了栅栏 那么 如果有需要执行的任务 就执行
开启下一代 返回0
if (index == 0) { // tripped
boolean ranAction = false;
try {
final Runnable command = barrierCommand;
if (command != null)
command.run();
ranAction = true;
nextGeneration();
return 0;
} finally {
if (!ranAction)
breakBarrier();
}
}
// loop until tripped, broken, interrupted, or timed out
//这里就是那些没有 达到栅栏 但是 仍有未到达栅栏的线程的处理
for (;;) {
try {
//处理未带超时时间
if (!timed)
trip.await();
//带超时时间
else if (nanos > 0L)
nanos = trip.awaitNanos(nanos);
} catch (InterruptedException ie) {
//到这里说明是 condition.await时候中断了
if (g == generation && ! g.broken) {
breakBarrier();
throw ie;
} else {
//这里是说明 开启了 下一代 或者 已经打破了栅栏
// We're about to finish waiting even if we had not
// been interrupted, so this interrupt is deemed to
// "belong" to subsequent execution.
Thread.currentThread().interrupt();
}
}
if (g.broken)
throw new BrokenBarrierException();
//正常情况下 当最后一个线程到达栅栏后 开启下一代 直接返回0
//如果condition的await等待过程中出现异常后 抛出
//如果 condition的await超时了 那么是不会抛出异常的 就会到下面的if语句中
if (g != generation)
return index;
//如果超时了 打破栅栏 抛出超时异常
if (timed && nanos <= 0L) {
breakBarrier();
throw new TimeoutException();
}
}
} finally {
lock.unlock();
}
}
Semaphore是AQS的共享锁实现, semaphore可以理解为是一个池,每个线程在执行之前都需要从池子里面拿到相应的资源才能运行。公平与非公平的区别就是在 请求资源的时候检查一下阻塞队列中是否有等待的
public Semaphore(int permits) {
sync = new NonfairSync(permits);
}
//第一个参数是 池子里面的资源数 fair是用公平/非公平策略
public Semaphore(int permits, boolean fair) {
sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}
acquire***
以其中一个 acuire()方法为例
public void acquire() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
protected int tryAcquireShared(int acquires) {
return nonfairTryAcquireShared(acquires);
}
//怎么请求资源的
final int nonfairTryAcquireShared(int acquires) {
for (;;) {
int available = getState();
//将 锁状态 减去 请求资源数
int remaining = available - acquires;
if (remaining < 0 ||
compareAndSetState(available, remaining))
return remaining;
}
}
//如果请求资源失败 那么就进入阻塞队列
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
release() 释放一个资源 release(int permits)
public void release(int permits) {
if (permits < 0) throw new IllegalArgumentException();
sync.releaseShared(permits);
}
//看到方法名称就知道是老套路
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
//自旋将锁状态 更新
protected final boolean tryReleaseShared(int releases) {
for (;;) {
int current = getState();
int next = current + releases;
if (next < current) // overflow
throw new Error("Maximum permit count exceeded");
if (compareAndSetState(current, next))
return true;
}
}
//唤醒所有阻塞队列中等待的线程
private void doReleaseShared() {
/*
* Ensure that a release propagates, even if there are other
* in-progress acquires/releases. This proceeds in the usual
* way of trying to unparkSuccessor of head if it needs
* signal. But if it does not, status is set to PROPAGATE to
* ensure that upon release, propagation continues.
* Additionally, we must loop in case a new node is added
* while we are doing this. Also, unlike other uses of
* unparkSuccessor, we need to know if CAS to reset status
* fails, if so rechecking.
*/
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue; // loop to recheck cases
unparkSuccessor(h);
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
个人微信公众号程序员探索之路,公众号内点击网赚获取彩蛋,大家一起加油