Scala 数组

一  Array 数组

在Scala中,Array代表的含义和Java中类似,也是长度不可变的数组

此外,由于Scala与Java都运行在JVM中,双方可以互相调用,因此

Scala数组的底层实际上是Java数组。例如字符串数组在底层就是

javaString[],整数数组在底层就是Int[]

 

数组初始化四种方式:

 

>>val names = new Array[String](10);

 

>>val users =Array("nicky","belly","avira","beyonce","kario");

 

>>val values = Array.fill(5)(10);

 

>>val nums = Array.ofDim[String](5);

 

数组赋值:

names(index)= value;

比如

names(0)="hadoop";

names(1)="hbase";

 

二ArrayBuffer 可变长数组

在Scala中,如果需要类似于Java中的ArrayList这种长度可变的集合类,

则可以使用ArrayBuffer。

importscala.collection.mutable._

 

使用ArrayBuffer()的方式可以创建一个空的ArrayBuffer

valb = ArrayBuffer[Int]();

 

使用+=操作符,可以添加一个元素,或者多个元素

b+= 1

b+= (2, 3, 4, 5)

代码示例:

scala>val buffer = ArrayBuffer[String]();

buffer:scala.collection.mutable.ArrayBuffer[String] = ArrayBuffer()

 

scala>buffer+="hadoop";

res50:buffer.type = ArrayBuffer(hadoop)

 

scala>buffer+=("hive","flume","sqoop","oozie");

res51:buffer.type = ArrayBuffer(hadoop, hive, flume, sqoop, oozie)

scala>:paste

//Entering paste mode (ctrl-D to finish)

 

for(i <- 0 until buffer.length)

  println(buffer(i))

 

//Exiting paste mode, now interpreting.

 

hadoop

hive

flume

sqoop

oozie

 

使用++=操作符,可以添加其他集合中的所有元素

b++= Array(6, 7, 8, 9, 10)

代码示例:

scala>val buffer2 =ArrayBuffer("storm","JStorm","Scala","Spark","Flink");

buffer2:scala.collection.mutable.ArrayBuffer[String] = ArrayBuffer(storm, JStorm,Scala, Spark, Flink)

 

scala>buffer++=buffer2;

res53:buffer.type = ArrayBuffer(hadoop, hive, flume, sqoop, oozie, storm, JStorm,Scala, Spark, Flink)

 

 

使用trimEnd()函数,可以从尾部截断指定个数的元素

b.trimEnd(5)

 

使用insert()函数可以在指定位置插入元素

但是这种操作效率很低,因为需要移动指定位置后的所有元素

b.insert(5,6) //在index=5的位置插入6

b.insert(6,7, 8, 9, 10) //在index=5的位置插入6, 7,8, 9, 10

 

使用remove()函数可以移除指定位置的元素

b.remove(1)//删除index位置元素

b.remove(index,n) //删除index位置开始之后的

 

Array与ArrayBuffer可以互相进行转换

b.toArray

a.toBuffer

 

 

三 数组遍历

 

使用for循环和until遍历Array /ArrayBuffer

使until是RichInt提供的函数

for(i <- 0 until b.length)

  println(b(i))

代码示例:

scala>for(i <- 0 until buffer2.length) print(buffer2(i)+" ")

stormJStorm Scala Spark Flink

 

跳跃遍历Array /ArrayBuffer

for(i<- 0 until (b.length, 2))

  println(b(i))

代码示例:

scala>for(i <- 0 until (buffer2.length,2)) print(buffer2(i)+" ")

stormScala Flink

 

从尾部遍历Array /ArrayBuffer

for(i<- (0 until b.length).reverse)

  println(b(i))

代码实例:

scala>  for(x <- (0 until buffer.length).reverse)print(buffer(x))

jfedcb

 

 

使用“增强for循环”遍历Array /ArrayBuffer

for(e <- b)

  println(e)

代码实例:

scala>for(value <- buffer2) print(value +" " )

stormJStorm Scala Spark Flink

 

四 数组常见操作

4.1数组元素求和

vala = Array(1, 2, 3, 4, 5)

valsum = a.sum

15

 

4.2获取数组最大值

valmax = a.max

scala>val max = a.max

max:Int = 5

 

4.3对数组进行排序

scala.util.Sorting.quickSort(a)

 

4.4获取数组中所有元素内容

a.mkString

a.mkString(",")

a.mkString("<",",", ">")

 

4.5toString函数

a.toString

b.toString

 

 

五 数组高级特性

5.1数组转换

5.1.1使用yield转换数组

for{子句} yield{变量或表达式}

yield:每一次遍历,记住变量或表达式的值,然后放到一个数组里,

直到遍历完毕,产生了一个新的数组

 

scala>val a = Array(1,2,3,4,5)

a:Array[Int] = Array(1, 2, 3, 4, 5)

 

scala>val a2 = for(element <- a) yield { element * element }

a2:Array[Int] = Array(1, 4, 9, 16, 25)

 

scala>val a4 = for(element <- a if element % 2 == 0) yield element * element

a4:Array[Int] = Array(4, 16)

 

scala>import scala.collection.mutable._

importscala.collection.mutable._

scala>val b = ArrayBuffer[Int]();

b:scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer()

 

scala>b+=(1,2,3,4,5)

res0:b.type = ArrayBuffer(1, 2, 3, 4, 5)

 

scala>val b2 = for (ele <- b) yield {ele*ele}

b2:scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1, 4, 9, 16, 25)

 

5.1.2使用map函数转换数组

scala>b2.filter(_ % 2 == 0).map(_ * 2)

res1:scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(8, 32)

 

scala>b2.filter{_ % 2 == 0}.map{_ * 2}

res2:scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(8, 32)

其中_代表占位符,表示当前元素。

 

六Map 与 Tuple

6.1Map

6.1.1创建map

>>创建一个不可变的Map

valages = Map("Leo" -> 30, "Jen" -> 25, "Jack"-> 23)

ages("Leo")= 31

>>创建一个可变的Map

scala>val scores =scala.collection.mutable.Map("Nicky"->87,"Nancy"

->88,"Geoger"->75);

scores:scala.collection.mutable.Map[String,Int] = Map(Nicky -> 87, Geoger -> 75,Nancy -> 88)

>>另外一种方式定义Map元素

valages = Map(("Leo", 30), ("Jen", 25), ("Jack",23))

>>创建一个空的HashMap

valages = new scala.collection.mutable.HashMap[String,Int]

 

6.1.2访问Map

获取指定key对应的value,如果key不存在,会报错

valleoAge = ages("Leo")

使用contains函数检查key是否存在

scala>scores.contains("Nicky")

res33:Boolean = true

通过get/getOrElse获取元素

scala>scores.get("Nicky")

res35:Option[Int] = Some(87)

 

scala>val score = scores.getOrElse("Helen","Bob");

score:Any = Bob

 

scala>val score = scores.getOrElse("Helen1","Bob");

score:Any = Bob

 

6.1.3添加元素

增加多个元素

scala>ages += ("Mike" -> 35, "Tom" -> 40)

res38:ages.type = Map(Nicky -> 25, Mike -> 35, Tom -> 40)

 

添加一个元素

scala>ages.put("Leaf",20);

res39:Option[Int] = None

6.1.5修改Map元素

scala> scores("Nicky")= 90

scala>scores.get("Nicky")

res37:Option[Int] = Some(90)6.2 Tuple

 

6.1.6修改不可变Map

scala> vall_users = users+("Ooize"->10,"Sqoop"->23)

 

6.1.7移除元素

scala> ages -="Leaf"

res41:ages.type = Map(Nicky -> 25, Mike -> 35, Tom -> 40)

 

6.1.8移除不可变元素

val l_users_1 =l_users - "Sqoop"

 

6.1.9遍历Map

>>遍历map的entrySet

scala>for((key,value) <- ages) print(key +"="+ value+" ")

Nicky=25Mike=35 Tom=40

遍历map的key

for(key<- ages.keySet) print(key)

 

scala>for(key <- ages.keySet) print(key+" ")

NickyMike Tom

 

遍历map的value

for(value<- ages.values) print(value+" ")

scala>for(value <- ages.values) print(value+" ")

2535 40

 

6.1.10生成新map,反转key和value

scala>for ((key, value) <- ages) yield (value, key)

res48:scala.collection.mutable.HashMap[Int,String] = Map(35 -> Mike,

 40 -> Tom, 25 -> Nicky)

 

//SortedMap可以自动对Map的key的排序

valages = scala.collection.immutable.SortedMap("leo" -> 30,"alice" -> 15, "jen" -> 25)

//LinkedHashMap可以记住插入entry的顺序

valages = new scala.collection.mutable.LinkedHashMap[String, Int]

ages("leo")= 30

ages("alice")= 15

ages("jen")= 25

6.2tuple元组

其实就是一个keyvalue对组成的一个数据

创建一个tuple

valt = ("Nicky","Chengdu");

 

遍历tuple

t._1访问第一个元素

t._2访问第二个元素

scala>t._1

res55:String = Nicky

 

scala>t._2

res56:String = Chengdu

 

zip操作,也叫拉链操作,把两个数据量相等的集合或者数组进行一个拼接

scala>val names = Array("leo", "jack", "mike")

names:Array[String] = Array(leo, jack, mike)

 

scala>val ages = Array(30, 24, 26)

ages:Array[Int] = Array(30, 24, 26)

 

scala>val nameAges = names.zip(ages)

nameAges:Array[(String, Int)] = Array((leo,30), (jack,24), (mike,26))

你可能感兴趣的:(大数据/Scala,基础)