hadoop默认对3个副本的存储策略和执行策略:

1,首先要先了解下什么是rack(机架)集群,一个集群有多个机架,一个机架有多个机器,一个机器一个datanode或namenode节点。通常一个机架内的机器之间的网络速度会高于跨机架机器之间的网络速度。
2,但是要同时保持副本存储策略的容错性和高效性,第一副本:放置在上传文件的DN上(就是执行‘hadoop fs -put 文件名’上传文件命令的机器上,本地文件上传到同一台机器自然要快一点),如果是集群外提交,则随机挑选一台;第二副本:放置在第一副本不同机架的不同节点上;第三副本,放置在第二副本相同机架的不同节点上;其他更多副本:随机放置在节点中。
3,在高效性方面,一个大文件被分成多个分片,也就是多个map任务分别在多个datanode节点上处理,这里就牵扯到任务粒度。如果有m个map任务,不一定会在m个datanode 节点上并行运行。因为可能存在一个datanode上有多个分片\数据块\map任务,所以应该准确的说m个map任务在n个datanode节点上并行运行(注意是并行运行,这样同时处理才会快)。
4,本地计算,在2中也存在野种思想,就是把在哪台DN上传的文件就把此DN作为第一副本;再者就是数据存储在那台机器就由哪台机器负责进行这部分数据的计算,这样可以减少数据在网络上的传输,数据在哪里我就在哪里计算,做到不移动数据,在业界把这形容为“移动计算比移动数据更经济”。

你可能感兴趣的:(云服务云计算网络存储大数据)