OpenCV 中KNN构造函数如下。
C++: CvKNearest::CvKNearest() C++: CvKNearest::CvKNearest(const Mat& trainData, const Mat& responses, const Mat& sam- pleIdx=Mat(), bool isRegression=false, int max_k=32 )
训练函数为:
C++: bool CvKNearest::train( const Mat& trainData, //训练数据 const Mat& responses,//对应的响应值 const Mat& sampleIdx=Mat(),//样本索引 bool isRegression=false,//是否是回归,否则是分类问题 int maxK=32, //最大K值 bool updateBase=false//是否更新数据,是,则maxK需要小于原数据大小 )
查找函数:
还有一些其他辅助函数,无关紧要,略去了。C++: float CvKNearest::find_nearest( const Mat& samples,//按行存储的测试数据 int k, //K 值 Mat* results=0,//预测结果 const float** neighbors=0, //近邻指针向量 Mat* neighborResponses=0, //近邻值 Mat* dist=0 //距离矩阵) const C++: float CvKNearest::find_nearest( const Mat& samples, int k, Mat& results, Mat& neighborResponses, Mat& dists) const
OpenCV 有KNN 的示例,改写成C++ 版本如下:
#include
#include
#include
int main( )
{
const int K = 10;
int i, j, k, accuracy;
float response;
int train_sample_count = 100;
cv::RNG rng_state(-1);
cv::Mat trainData(train_sample_count,2,CV_32FC1);
cv::Mat trainClasses(train_sample_count,1,CV_32FC1);
cv::Mat img(cv::Size(500,500),CV_8UC3,cv::Scalar::all (0));
float _sample[2];
cv::Mat sample(1,2,CV_32FC1,_sample);
cv::Mat trainData1, trainData2, trainClasses1, trainClasses2;
// form the training samples
trainData1 = trainData.rowRange (0,train_sample_count/2);
rng_state.fill (trainData1,CV_RAND_NORMAL,cv::Scalar(200,200),cv::Scalar(50,50));
trainData2 = trainData.rowRange (train_sample_count/2,train_sample_count);
rng_state.fill (trainData2,CV_RAND_NORMAL,cv::Scalar(300,300),cv::Scalar(50,50));
trainClasses1 = trainClasses.rowRange (0,train_sample_count/2);
trainClasses1.setTo (1);
trainClasses2 = trainClasses.rowRange (train_sample_count/2,train_sample_count);
trainClasses2.setTo (2);
// learn classifier
CvKNearest knn( trainData, trainClasses, cv::Mat(), false, K );
cv::Mat nearests( 1, K, CV_32FC1);
for( i = 0; i < img.rows; i++ )
{
for( j = 0; j < img.cols; j++ )
{
sample.at(0,0) = (float)j;
sample.at(0,1) = (float)i;
// estimate the response and get the neighbors' labels
response = knn.find_nearest(sample,K,0,0,&nearests,0);
// compute the number of neighbors representing the majority
for( k = 0, accuracy = 0; k < K; k++ )
{
if( nearests.at(0,k) == response)
accuracy++;
}
// highlight the pixel depending on the accuracy (or confidence)
img.at(i,j) = response == 1 ?
(accuracy > 5 ? cv::Vec3b(0,0,180) : cv::Vec3b(0,120,180)) :
(accuracy > 5 ? cv::Vec3b(0,180,0) : cv::Vec3b(0,120,120));
}
}
// display the original training samples
for( i = 0; i < train_sample_count/2; i++ )
{
cv::Point pt;
pt.x = cvRound(trainData1.at(i,0));
pt.y = cvRound(trainData1.at(i,1));
cv::circle (img,pt,2,cv::Scalar(0,0,255),1,CV_FILLED);
pt.x = cvRound(trainData2.at(i,0));
pt.y = cvRound(trainData2.at(i,1));
cv::circle (img,pt,2,cv::Scalar(0,255,0),1,CV_FILLED);
}
cv::namedWindow( "classifier result", 1 );
cv::imshow( "classifier result", img );
cv::waitKey(0);
return 0;
}
运行得到如下结果 ,亮点为训练数据点,图像每个像素是测试数据。