- 智能家居语音识别模块
兢兢业业的打野
单片机嵌入式硬件
#include#include"stm32f10x.h"#include"usart.h"#include"user_common.h"#include"SNR1806/snr1806.h"#ifndefNULL#defineNULL0#endifstaticu8gRevDataBuf[30]={0};LD3322Handle_tgs_Ld3322Handle={.bl_rev_cmd_flg=
- 使用vue3实现语音交互的前端页面
Rverdoser
交互前端
要在Vue3中实现语音交互的前端页面,你可以使用WebSpeechAPI。以下是一个简单的例子,展示了如何在Vue3组件中集成语音识别(speechrecognition)和语音合成(speechsynthesis)功能。首先,确保你的项目中安装了vue3。npminstallvue@next然后,创建一个Vue组件:开始录音开始播放import{ref}from'vue';constSpeech
- Java语音识别:开启人机交互的新篇章
苏-言
语音识别人机交互人工智能
语音识别思路:首先使用工具类开始录音并存储再调用百度语音识别API接口进行语音内容的识别导入依赖:com.alibabafastjson1.2.83com.squareup.okhttp3okhttp4.9.3ws.schildjave-all-deps3.5.0com.baidu.aipjava-sdk4.16.19编写语音合成工具类:/***录音,存储为WAV文件*@authoradmin_7
- LLMs,即大型语言模型
maopig
AI语言模型人工智能自然语言处理
LLMs,即大型语言模型,是一类基于深度学习的人工智能模型,它们通过海量的数据和大量的计算资源进行训练,可以理解和生成自然语言。LLMs的核心架构是Transformer,其关键在于自注意力机制,使得模型能够同时对输入的所有位置进行“关注”,从而更好地捕捉长距离的语义依赖关系。LLMs在众多领域都有广泛的应用,如自然语言理解(NLU),语言生成,以及语音识别和合成等。例如,它们能够理解人类的语言
- whisper.cpp 学习笔记
法号:行颠
机器学习whisper学习笔记
whisper.cppwhisper.cpp学习笔记whisper介绍源码下载源码编译支持的模型优化/加速生成库文件使用whispe.cpp的demo参考文献whisper.cpp学习笔记whisper介绍whisper是基于OpenAI的自动语音识别(ASR)模型。他可以识别包括英语、普通话等在内多国语言。whisper分为whisper(python版本)和whisper.cpp(C/C++版
- 神经架构搜索在大模型效率优化中的应用
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
神经架构搜索,大模型,效率优化,自动机器学习,深度学习1.背景介绍近年来,深度学习模型取得了令人瞩目的成就,在图像识别、自然语言处理、语音识别等领域展现出强大的能力。然而,随着模型规模的不断扩大,训练和部署这些大模型也带来了巨大的挑战。计算资源消耗巨大:大模型的训练需要大量的计算资源,例如高性能GPU和TPU,这导致训练成本高昂,难以普及。内存占用量大:大模型的参数量庞大,需要大量的内存进行存储和
- GPT Notes 3.2.1.2 | 最强GPT解锁会员版无需登录无限制使用
星图软件库
软件分享gpt软件工程
GPTNotes是一款功能强大的AI智能软件,提供无需登录的永久会员体验,满足用户在工作和学习中的各种需求。它支持语音识别,帮助用户轻松撰写文章、解答问题,并具备语音转文字、图片识别等几十种AI功能。打开即享会员特权,不受限使用所有功能,无需特别网络要求,可直接开启悬浮窗口模式,随时提问而不打断工作流,极大提高效率。大小:68.7M下载地址:百度网盘:https://pan.baidu.com/s
- 语音识别技术有哪些应用场景?
不想秃头的程序
语音识别人工智能
语音识别技术,作为人工智能领域的重要分支,已经深入到我们日常生活的方方面面。以下是一些常见的应用场景:智能助理智能助理如Siri、GoogleAssistant以及Alexa等,都基于语音识别技术来实现用户交互。用户可以通过语音命令来拨打电话、查询信息、设置提醒等。这些助理软件能够理解多种语言和方言,并能够在复杂的环境噪声中准确识别用户的指令。智能家居在智能家居领域,语音识别被用于控制各种智能设备
- 微软 Azure AI 服务免费试用及申请:语音识别、文本转语音、基于视觉、语言处理、文档分析等10大场景
全云在线allcloudonline
microsoftazure人工智能
为方便企业认识和快速上手AzureAI服务,我们总结了一套包括语音识别、文本转语音、基于视觉、语言处理场景、文档分析场景等全面的预构建模型和演示,旨在解决各种用例。这些模型易于访问,可帮助企业无缝实施AI驱动的解决方案,如下是已整理并编录的AzureAI服务中提供的预构建演示,希望这可以帮助您将AI无缝融入您的产品和服务中。微软AzureAI服务可以合规、稳定地提供企业用户使用ChatGPT的可能
- 基于人工智能的智能语音助手
人工智能发烧友
人工智能
语音助手的自然语言处理模块是语音助手系统的关键组成部分。通过这个模块,系统能够识别用户的意图并做出相应的回应。我们可以使用NLP技术来解析文本输入,并将其转换为系统可以理解的命令或指令。在本项目中,我们将结合语音识别、自然语言处理和语音合成技术,构建一个功能简化的语音助手。一、项目背景与需求分析1.1项目目标本项目旨在创建一个语音助手系统,它可以:1.语音识别:从用户的语音输入中提取文本信息。2.
- 【ShuQiHere】探索人工智能核心:机器学习的奥秘
ShuQiHere
人工智能机器学习
【ShuQiHere】什么是机器学习?机器学习(MachineLearning,ML)是人工智能(ArtificialIntelligence,AI)中最关键的组成部分之一。它使得计算机不仅能够处理数据,还能从数据中学习,从而做出预测和决策。无论是语音识别、自动驾驶还是推荐系统,背后都依赖于机器学习模型。机器学习与传统的编程不同,它不再依赖于人类编写的固定规则,而是通过数据自我改进模型,从而更灵活
- 机器学习,深度学习,AGI,AI的概念和区别
我就是全世界
人工智能机器学习深度学习
1.人工智能(AI)的定义与范围1.1AI的基本概念人工智能(AI)是指通过计算机系统模拟人类智能的技术和科学。AI的目标是创建能够执行通常需要人类智能的任务的系统,如视觉识别、语音识别、决策制定和语言翻译。AI的核心在于其能够处理和分析大量数据,从中提取有用的信息,并根据这些信息做出决策或预测。AI的发展可以追溯到20世纪50年代,当时科学家们开始探索如何使机器能够执行复杂的任务。随着计算能力的
- Python 实时语音识别
TEDxPY
python学习python资源语音识别Python人工智能实时语音识别百度语音API
Python实时语音识别语音识别语音识别API语音识别步骤效果展示代码下载最近自己想接触下语音识别,经过一番了解和摸索,实现了对语音识别API的简单调用,正好写文章记录下。目前搜到的帖子里,有现成的调用百度语音API来对音频文件进行识别的;也有通过谷歌语音服务来实现了实时语音识别的。由于我这谷歌语音一直调用不成功,就将二者结合,简单实现了通过百度语音API来进行实时语音识别。语音识别语音识别技术就
- 深度神经网络详解:原理、架构与应用
阿达C
活动dnn计算机网络人工智能神经网络机器学习深度学习
深度神经网络(DeepNeuralNetwork,DNN)是机器学习领域中最为重要和广泛应用的技术之一。它模仿人脑神经元的结构,通过多层神经元的连接和训练,能够处理复杂的非线性问题。在图像识别、自然语言处理、语音识别等领域,深度神经网络展示了强大的性能。本文将深入解析深度神经网络的基本原理、常见架构及其实际应用。一、深度神经网络的基本原理1.1神经元和感知器神经元是深度神经网络的基本组成单元。一个
- 本地搭建 Whisper 语音识别模型实现实时语音识别研究
一只老虎
人工智能编程开发算法研究whisper语音识别人工智能
目录摘要关键词1.引言2.Whisper模型简介3.环境准备4.系统架构与实现4.1模型加载4.2实时音频输入处理4.3实时转录处理4.4程序实现的框架4.5代码实现5.实验与结果6.讨论7.结论参考文献摘要语音识别技术近年来发展迅速,广泛应用于智能家居、智能客服、语音助手等领域。Whisper是由OpenAI开发的一种开源语音识别模型,具有高效的转录能力。本研究旨在探讨如何在本地环境中搭建Whi
- 如何从0到1本地搭建whisper语音识别模型
MaxCode-1
搭建本地gptwhisper
文章目录环境准备1.系统要求2.安装依赖项1:安装Python和虚拟环境2:安装Whisper3:下载Whisper模型4:进行语音识别5:提高效率和精度6:开发和集成Whisper是OpenAI发布的一个强大的语音识别模型,它可以将语音转换为文本,支持多语言输入,并且可以处理各种音频类型。以下是一个从0到1的本地搭建Whisper模型进行语音识别教程环境准备1.系统要求操作系统:Linux、Ma
- FunASR 语音识别系统概述
瑞雪兆我心
语音识别人工智能
FunASR(AFundamentalEnd-to-EndSpeechRecognitionToolkit)是一个基础的语音识别工具包,提供多种功能,包括语音识别(ASR)、语音端点检测(VAD)、标点恢复(PR)、语言模型(LM)、说话人分离等。项目源地址1语音识别(ASR)参考语音交互:聊聊语音识别-ASR(万字长文)语音识别技术(AutomaticSpeechRecognition,ASR)
- 使用PyTorch实现的DeepSpeech模型: 强大的语音识别利器
毕艾琳
使用PyTorch实现的DeepSpeech模型:强大的语音识别利器deepspeech.pytorchSpeechRecognitionusingDeepSpeech2.项目地址:https://gitcode.com/gh_mirrors/de/deepspeech.pytorch在今天的数字化世界中,语音识别技术已成为人机交互的关键组成部分。deepspeech.pytorch是一个由Sea
- 使用matlab的热门问题
七十二五
值得关注matlab开发语言青少年编程算法经验分享
MATLAB广泛应用于科学计算、数据分析、信号处理、图像处理、机器学习等多个领域,因此热门问题也涵盖了这些方面。以下是一些可能被认为当前最热门的MATLAB问题:深度学习与神经网络:如何使用MATLAB的深度学习工具箱(DeepLearningToolbox)来构建和训练神经网络?如何利用MATLAB进行图像识别、语音识别或自然语言处理等深度学习应用?数据分析与可视化:如何使用MATLAB进行大数
- 2021-01-02随笔
0清婉0
人工智能时代最重要的是机器学习,像数据分析、图像识别、数据挖掘、自然语言处理、语音识别等都是以其为基础的,也可以说人工智能的各种应用都需要机器学习来支撑。现在各大公司越来越注重数据的价值,人工成本也是越来越高,所以机器学习也就变得不可或缺了。数据分析、自然语言处理、语音识别,这将是作为前端人员的我,在2021年学习的重点。现收集几本关于数据分析的书籍,作为参考书籍学习:1.《跟着迪哥学Python
- 基于深度学习的对抗样本生成与防御
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的对抗样本生成与防御是当前人工智能安全领域的关键研究方向。对抗样本是通过对输入数据进行微小扰动而产生的,能够导致深度学习模型做出错误预测。这对图像分类、自然语言处理、语音识别等应用构成了严重威胁,因此相应的防御措施也在不断发展。1.对抗样本生成对抗样本生成的方法主要有两大类:基于梯度的方法和基于优化的方法。1.1基于梯度的方法这些方法利用模型的梯度信息,通过细微的扰动来生成对抗样本,迫
- 垂类大模型:领域专家参与的重要性
澳鹏Appen
生成式AI人工智能与机器学习人工智能AI生成式AI
随着人工智能(AI)的不断发展,训练数据的完整性和质量至关重要。早期的AI模型专注于处理和分析任务,如图像识别、语音识别和情感分析。这些模型通常是在大型数据集上训练的,标注任务多可以由具有一般技能的人类执行,早期模型中的缺陷可以被标注员轻松识别和纠正。然而近年,AI领域经历了重大变革。当代模型被设计用于更复杂的功能,如推理和总结,旨在处理需要更高认知参与的复杂和多样化场景。这些先进模型不仅需要原始
- 推荐项目:VITS2 Chinese - 轻松转化你的中文语音至文本
傅尉艺Maggie
推荐项目:VITS2Chinese-轻松转化你的中文语音至文本VITS2-ChineseVITS2forChinesespeech|最新VITS2中文语音合成项目地址:https://gitcode.com/gh_mirrors/vi/VITS2-Chinese项目介绍VITS2Chinese是一个针对中文语音的自动转文字工具,它简化了传统语音识别的复杂流程,让用户只需上传音频文件,就能一键完成语
- 人机交互与现代战争
人机与认知实验室
人机交互
人机交互技术在现代战争中的应用越来越广泛,它可以帮助士兵更好地完成任务,提高作战效能,减少人员伤亡。人机交互与认知在军事应用方面的进展有很多,比如:(1)虚拟现实和增强现实技术:这些技术可以为士兵提供沉浸式的训练环境,模拟各种战斗场景和任务,帮助他们提高技能和决策能力。(2)语音识别和自然语言处理:通过语音识别和自然语言处理技术,士兵可以通过语音指令与武器系统、通信设备等进行交互,提高操作效率和减
- 机器学习-神经网络:循环神经网络(RNN)详解
刷刷刷粉刷匠
机器学习机器学习神经网络rnn
引言在当今人工智能(AI)和深度学习(DL)领域,循环神经网络(RNN)作为一种专门处理序列数据的模型,具有不可忽视的重要性。RNN的设计目标是模拟和处理序列中的时间依赖关系,使其成为许多应用场景的理想选择,如自然语言处理(NLP)、时间序列预测和语音识别等。它不仅能处理固定长度的数据输入,还能应对输入长度不一的序列,从而为各种复杂的时序数据任务提供了强有力的支持。1.RNN的起源与发展循环神经网
- WhisperX: 带时间戳的自动语音识别及说话人分离
史恋姬Quimby
WhisperX:带时间戳的自动语音识别及说话人分离whisperXm-bain/whisperX:是一个用于实现语音识别和语音合成的JavaScript库。适合在需要进行语音识别和语音合成的网页中使用。特点是提供了一种简单、易用的API,支持多种语音识别和语音合成引擎,并且能够自定义语音识别和语音合成的行为。项目地址:https://gitcode.com/gh_mirrors/wh/whisp
- 语音识别 学习笔记2024
AI算法网奇
深度学习基础音视频人工智能
目录dragonfly阿里达摩院FunASR:一款高效的端到端语音识别工具包不错的功能介绍librosa安装语音识别dragonfly阿里达摩院FunASR:一款高效的端到端语音识别工具包不错的功能介绍librosa,一个很有趣的Python库!-简书音频转特征向量GitHub-librosa/librosa:Pythonlibraryforaudioandmusicanalysislibrosa
- 用“说”智能控制灯具开关语音识别芯片NRK3603
九芯电子
九芯电子语音芯片方案语音识别人工智能语音识别技术语音识别芯片语音芯片
用“说”智能控制灯具开关是一种基于语音识别技术的智能家居设备,它通过内置的语音识别芯片,利用离线识别算法,将用户的语音指令实现对灯具的控制,NRK3603语音识别芯片成为客户低成本的离线语音识别方案。功能特性:1.内核和存储高性能32bitRlsc内核,主频160MHZ,内置4MBSPIFLASH。2.AI算法:离线语音识别,采用最新的神经网络(TDNN)算法,具有识别精准,误判率低等优势,5米远
- 快速搭建本地 Whisper 语音识别大模型
码上飞扬
whisper
在语音识别领域,OpenAI的Whisper模型以其高效且准确的特性迅速受到瞩目。许多人可能觉得在本地环境中运行这样一个大模型过于复杂,但其实,经过正确的指导,你完全可以在自己的计算机上搭建一个高性能的语音识别系统。前置准备在开始之前,你需要确保计算机符合以下条件:Python3.7+环境GPU支持(CUDA驱动):尽管CPU也能运行,但GPU会更快。足够的存储空间:模型可能需要几个GB。步骤一:
- 本地搭建和运行Whisper语音识别模型小记
LQS2020
whisper
搭建本地的Whisper语音识别模型可以是一个非常有用的项目,尤其是在需要离线处理语音数据的情况下。Whisper是OpenAI开发的一个开源语音识别模型,支持多语言和高效的转录能力。以下是详细的步骤来本地搭建和运行Whisper语音识别模型:1.准备环境安装Python确保你的系统上安装了Python3.8及以上版本。可以从Python官方网站下载并安装。创建虚拟环境(可选)为了避免依赖冲突,建
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo