序列比对(14)viterbi算法和后验解码的比较

本文比较了viterbi算法求解最可能路径以及后验解码这两种不同的解码方法。

前文《序列比对(十)viterbi算法求解最可能路径》介绍了用viterbi算法求解最可能路径:在符号序列已知而状态序列未知时,最可能路径是:
序列比对(14)viterbi算法和后验解码的比较_第1张图片
本文将这两种方法比较了以下,看它们各自求解的路径差异是否显著。分两种情况:
一、如前面几篇文章一样,从公平骰子转为作弊骰子的概率是0.05。
效果如下:(其中Rolls一行是符号序列,也就是骰子投出的结果;Die一行是真实的骰子状态;Viterbi一行是viterbi算法求解出的最可能路径;PostDec一行是后验解码得出的路径)
序列比对(14)viterbi算法和后验解码的比较_第2张图片
二、将公平骰子转为作弊骰子的概率改为0.01。并将投骰子的次数增加到1000次。《生物序列分析》一书中说,此种情况下,viterbi求解的路径没有出现过’L’(即作弊骰子)。但是,笔者实验的结果是两种方法都可能出现’L’。效果如下:

具体代码如下:(以概率0.01,投骰子次数1000的情形为例写的代码)

#include 
#include 
#include 
#include 
#define MIN_LOG_VALUE -99
//#define SAFE_EXP(x) ((x) < MIN_LOG_VALUE ? 0 : exp(x))

typedef char State;
typedef char Result;
State state[] = {'F', 'L'};   // 所有的可能状态
Result result[] = {'1', '2', '3', '4', '5', '6'};   // 所有的可能符号
double init[] = {0.9, 0.1};    // 初始状态的概率向量
double emission[][6] = {   // 发射矩阵:行对应着状态,列对应着符号
  1.0/6, 1.0/6, 1.0/6, 1.0/6, 1.0/6, 1.0/6,
  0.1, 0.1, 0.1, 0.1, 0.1, 0.5
};
double trans[][2] = {   // 转移矩阵:行和列都是状态
  0.99, 0.01,
  0.1, 0.9
};
const int nstate = 2;
const int nresult = 6;

double** fscore;  // 前向算法的得分矩阵
double** bscore;  // 后向算法的得分矩阵
double* scale;   // 缩放因子向量
double logScaleSum;

State* rst;   // 一串随机状态序列
Result* rres;  // 一串随机符号序列
State* vst;   // viterbi算法猜出来的状态序列
State* pst;   // 后验解码得到的状态序列

struct Unit {
  double v;
  int *p;
  int size;
};
typedef struct Unit* pUnit;

int random(double* prob, const int n);
void randSeq(State* st, Result* res, const int n);
int getResultIndex(Result r);
void printState(State* st, const int n);
void printResult(Result* res, const int n);
double forward(Result* res, const int n);
double backward(Result* res, const int n);
double** getPostProb(const int n);
void postDecode(double** prob, const int n);
void traceback(pUnit** a, const int l, const int i, State* st, const int m, int n);
void viterbi(Result* res, State* gst, const int n);

int main(void) {
  int i;
  int n = 1000;
  double** postProb;
  if ((rst = (State*) malloc(sizeof(State) * n)) == NULL || \
      (rres = (Result*) malloc(sizeof(Result) * n)) == NULL || \
      (scale = (double*) malloc(sizeof(double) * n)) == NULL || \
      (fscore = (double**) malloc(sizeof(double*) * nstate)) == NULL || \
      (bscore = (double**) malloc(sizeof(double*) * nstate)) == NULL || \
      (vst = (Result*) malloc(sizeof(Result) * n)) == NULL) {
    fputs("Error: out of space!\n", stderr);
    exit(1);
  }
  for (i = 0; i < nstate; i++) {
    if ((fscore[i] = (double*) malloc(sizeof(double) * n)) == NULL || \
        (bscore[i] = (double*) malloc(sizeof(double) * n)) == NULL) {
      fputs("Error: out of space!\n", stderr);
      exit(1);
    }
  }
  randSeq(rst, rres, n);
  //printState(rst, n);
  //printResult(rres, n);
  forward(rres, n);
  backward(rres, n);
  postProb = getPostProb(n);
  postDecode(postProb, n);
  viterbi(rres, vst, n);
  free(rst);
  free(rres);
  free(scale);
  free(fscore);
  free(bscore);
  free(vst);
  free(pst);
  for (i = 0; i < nstate; i++)
    free(postProb[i]);
  free(postProb);
}

// 根据一个概率向量从0到n-1随机抽取一个数
int random(double* prob, const int n) {
  int i;
  double p = rand() / 1.0 / (RAND_MAX + 1);
  for (i = 0; i < n - 1; i++) {
    if (p <= prob[i])
      break;
    p -= prob[i];
  }
  return i;
}

// 根据转移矩阵和发射矩阵生成一串随机状态和符号
void randSeq(State* st, Result* res, const int n) {
  int i, ls, lr;
  srand((unsigned int) time(NULL));
  ls = random(init, nstate);
  lr = random(emission[ls], nresult);
  st[0] = state[ls];
  res[0] = result[lr];
  for (i = 1; i < n; i++) {
    ls = random(trans[ls], nstate);
    lr = random(emission[ls], nresult);
    st[i] = state[ls];
    res[i] = result[lr];
  }
}

int getResultIndex(Result r) {
  return r - result[0];
}

// 前向算法计算P(x)
double forward(Result* res, const int n) {
  int i, l, k, idx;
  double logpx;
  // 缩放因子向量初始化
  for (i = 0; i < n; i++)
    scale[i] = 0;
  // 计算第0列分值
  idx = getResultIndex(res[0]);
  for (l = 0; l < nstate; l++) {
    fscore[l][0] = emission[l][idx] * init[l];
    scale[0] += fscore[l][0];
  }
  for (l = 0; l < nstate; l++)
    fscore[l][0] /= scale[0];
  // 计算从第1列开始的各列分值
  for (i = 1; i < n; i++) {
    idx = getResultIndex(res[i]);
    for (l = 0; l < nstate; l++) {
      fscore[l][i] = 0;
      for (k = 0; k < nstate; k++) {
        fscore[l][i] += fscore[k][i - 1] * trans[k][l];
      }
      fscore[l][i] *= emission[l][idx];
      scale[i] += fscore[l][i];
    }
    for (l = 0; l < nstate; l++)
      fscore[l][i] /= scale[i];
  }
  // P(x) = product(scale)
  // P(x)就是缩放因子向量所有元素的乘积
  logpx = 0;
  for (i = 0; i < n; i++)
    logpx += log(scale[i]);
  //printf("forward: logP(x) = %f\n", logpx);
  logScaleSum = logpx;
/*
  for (l = 0; l < nstate; l++) {
    for (i = 0; i < n; i++)
      printf("%f ", fscore[l][i]);
    printf("\n");
  }
*/
  return exp(logpx);
}

// 后向算法计算P(x)
// backward算法中使用的缩放因子和forward中的一样
double backward(Result* res, const int n) {
  int i, l, k, idx;
  double tx, logpx;
  // 计算最后一列分值
  for (l = 0; l < nstate; l++)
    bscore[l][n - 1] = 1 / scale[n - 1];
  // 计算从第n - 2列开始的各列分值
  for (i = n - 2; i >= 0; i--) {
    idx = getResultIndex(res[i + 1]);
    for (k = 0; k < nstate; k++) {
      bscore[k][i] = 0;
      for (l = 0; l < nstate; l++) {
        bscore[k][i] += bscore[l][i + 1] * trans[k][l] * emission[l][idx];
      }
    }
    for (l = 0; l < nstate; l++)
      bscore[l][i] /= scale[i];
  }
  // 计算P(x)
  tx = 0;
  idx = getResultIndex(res[0]);
  for (l = 0; l < nstate; l++)
    tx += init[l] * emission[l][idx] * bscore[l][0];
  logpx = log(tx) + logScaleSum;
  //printf("backward: logP(x) = %f\n", logpx);
/*
  for (l = 0; l < nstate; l++) {
    for (i = 0; i < n; i++)
      printf("%f ", bscore[l][i]);
    printf("\n");
  }
*/
  return exp(logpx);  
}

// 计算后验概率
double** getPostProb(const int n) {
  int i, k;
  double** postProb;
  //double logdiff;
  if ((postProb = (double**) malloc(sizeof(double*) * nstate)) == NULL) {
    fputs("Error: out of space!\n", stderr);
    exit(1);  
  }
  for (k = 0; k < nstate; k++) {
    if ((postProb[k] = (double*) malloc(sizeof(double) * n)) == NULL) {
      fputs("Error: out of space!\n", stderr);
      exit(1);
    }
  }
  // 计算后验概率
  for (i = 0; i < n; i++) {
    for (k = 0; k < nstate; k++) {
      postProb[k][i] = scale[i] * fscore[k][i] * bscore[k][i];
    }
  }
/*
  printf("\n");
  printf("Posterior Probabilities:\n");
  for (k = 0; k < nstate; k++) {
    for (i = 0; i < n; i++)
      printf("%f ", postProb[k][i]);
    printf("\n");
  }
*/
  return postProb;
}

void postDecode(double** prob, const int n) {
  int i, k;
  double maxCol;
  int idx;
  State* st;
  if ((st = (State*) malloc(sizeof(State) * n)) == NULL) {
    fputs("Error: out of space!\n", stderr);
    exit(1);    
  }
  for (i = 0; i < n; i++) {
    idx = 0;
    maxCol = prob[0][i];
    for (k = 1; k < nstate; k++)
      if (prob[k][i] > maxCol) {
        maxCol = prob[k][i];
        idx = k;
      }
    st[i] = state[idx];
  }
/*
  printf("\n");
  printf("Posterior Decode:\n");
  printState(st, n);
*/
  pst = st;
}

void printState(State* st, const int n) {
  int i;
  for (i = 0; i < n; i++)
    printf("%c", st[i]);
  printf("\n");
}

void printResult(Result* res, const int n) {
  int i;
  for (i = 0; i < n; i++)
    printf("%c", res[i]);
  printf("\n");  
}

void traceback(pUnit** a, const int l, const int i, State* st, const int m, int n) {
  int j, k;
  int ll = 125;   // 每行打印几个元素
  int nl, nd;
  pUnit pu = a[l][i];
  if (! i) {
    st[n] = state[l];
    nl = m / ll;
    nd = m % ll;
    for (k = 0; k < nl; k++) {
      printf("Rolls\t");
      printResult(rres + k * ll, ll);
      printf("Die\t");
      printState(rst + k * ll, ll);
      printf("Viterbi\t");
      printState(st + k * ll, ll);
      printf("PostDec\t");
      printState(pst + k * ll, ll);
      printf("\n");
    }
    if (nd > 0) {
      printf("Rolls\t");
      printResult(rres + k * ll, nd);
      printf("Die\t");
      printState(rst + k * ll, nd);
      printf("Viterbi\t");
      printState(st + k * ll, nd);
      printf("PostDec\t");
      printState(pst + k * ll, nd);
      printf("\n"); 
    }
    printf("\n\n");
    return;  
  }
  st[n] = state[l];
  for (j = 0, k = 0; j < nstate && k < pu->size; j++) {
    if (pu->p[j]) {
      traceback(a, j, i - 1, st, m, n - 1);
      k++;
    }
  }
}

void viterbi(Result* res, State* gst, const int n) {
  double maxCol;
  double* tm;
  int i, j, k, l;
  int idx;
  pUnit** aUnit;  // 得分矩阵
  double* loginit;   // 每个元素都取log后的初始向量
  double** logem;  // 每个元素都取log后的发射矩阵
  double** logtrans;  // 每个元素都取log后的转移矩阵
  double v0 = 0;   // v0(0)的log值
  // 初始化
  if ((aUnit = (pUnit**) malloc(sizeof(pUnit*) * nstate)) == NULL || \
      (loginit = (double*) malloc(sizeof(double) * nstate)) == NULL || \
      (logem = (double**) malloc(sizeof(double*) * nstate)) == NULL || \
      (logtrans = (double**) malloc(sizeof(double*) * nstate)) == NULL) {
    fputs("Error: out of space!\n", stderr);
    exit(1);
  }
  for (i = 0; i < nstate; i++) {
    if ((aUnit[i] = (pUnit*) malloc(sizeof(pUnit) * n)) == NULL || \
        (logem[i] = (double*) malloc(sizeof(double) * nresult)) == NULL || \
        (logtrans[i] = (double*) malloc(sizeof(double) * nstate)) == NULL) {
      fputs("Error: out of space!\n", stderr);
      exit(1);
    }
    for (j = 0; j < n; j++) {
      if ((aUnit[i][j] = (pUnit) malloc(sizeof(struct Unit))) == NULL || \
          (aUnit[i][j]->p = (int*) malloc(sizeof(int) * nstate)) == NULL) {
        fputs("Error: out of space!\n", stderr);
        exit(1);
      }
      for (k = 0; k < nstate; k++)
        aUnit[i][j]->p[k] = 0;
      aUnit[i][j]->size = 0;
    }
  }
  if ((tm = (double*) malloc(sizeof(double) * nstate)) == NULL) {
    fputs("Error: out of space!\n", stderr);
    exit(1);    
  }
  // 初始向量取log值
  for (i = 0; i < nstate; i++)
    loginit[i] = init[i] == 0 ? MIN_LOG_VALUE : log(init[i]);
  // 发射矩阵取log值
  for (i = 0; i < nstate; i++)
    for (j = 0; j < nresult; j++)
      logem[i][j] = emission[i][j] == 0 ? MIN_LOG_VALUE : log(emission[i][j]);
  // 转移矩阵取log值
  for (i = 0; i < nstate; i++)
    for (j = 0; j < nstate; j++)
      logtrans[i][j] = trans[i][j] == 0 ? MIN_LOG_VALUE : log(trans[i][j]); 
  // 动态规划计算得分矩阵
  // 首先计算第0列,因为第0列的值和vk(0)有关
  // v0(0) = 1, vk(0) = 0 for k>0
  idx = getResultIndex(res[0]);
  for (l = 0; l < nstate; l++)
    aUnit[l][0]->v = v0 + loginit[l] + logem[l][idx];
  // 计算从第1列开始的各列
  for (i = 1; i < n; i++) {
    idx = getResultIndex(res[i]);
    for (l = 0; l < nstate; l++) {
      maxCol = tm[0] = aUnit[0][i - 1]->v + logtrans[0][l];
      for (k = 1; k < nstate; k++) {
        tm[k] = aUnit[k][i - 1]->v + logtrans[k][l];
        if (tm[k] > maxCol)
          maxCol = tm[k];
      }
      aUnit[l][i]->v = maxCol + logem[l][idx];
      for (k = 0; k < nstate; k++)
        if (tm[k] == maxCol) {
          aUnit[l][i]->p[k] = 1;
          aUnit[l][i]->size++;
        }
    }
  }
/*
  // 打印得分矩阵
  for (l = 0; l < nstate; l++) {
    for (i = 0; i < n; i++)
      printf("%f ", aUnit[l][i]->v);
    printf("\n");
  }
*/
  maxCol = aUnit[0][n - 1]->v;
  for (l = 1; l < nstate; l++)
    if (aUnit[l][n - 1]->v > maxCol)
      maxCol = aUnit[l][n - 1]->v;
  for (l = 0; l < nstate; l++)
    if (aUnit[l][n - 1]->v == maxCol) {
      traceback(aUnit, l, n - 1, gst, n, n - 1);
    }
}

(公众号:生信了)

你可能感兴趣的:(#,序列算法)