概念
锁是最常用的同步工具。一段代码段在同一个时间只能允许被一个线程访问,比如一个线程A进入加锁代码之后由于已经加锁,另一个线程B就无法访问,只有等待前一个线程A执行完加锁代码后解锁,B线程才能访问加锁代码。
不要将过多的其他操作代码放到里面,否则一个线程执行的时候另一个线程就一直在等待,就无法发挥多线程的作用了。
NSLock
//主线程中
NSLock *lock = [[NSLock alloc] init];
//线程1
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
[lock lock];
NSLog(@"线程1");
sleep(2);
[lock unlock];
NSLog(@"线程1解锁成功");
});
//线程2
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
sleep(1);//以保证让线程2的代码后执行
[lock lock];
NSLog(@"线程2");
[lock unlock];
});
2016-08-19 14:23:09.659 ThreadLockControlDemo[1754:129663] 线程1
2016-08-19 14:23:11.663 ThreadLockControlDemo[1754:129663] 线程1解锁成功
2016-08-19 14:23:11.665 ThreadLockControlDemo[1754:129659] 线程2
NSLock 加锁失败,会阻塞线程。但是 tryLock 并不会阻塞线程。
@synchronized代码块
NSObject *obj = [[NSObject alloc] init];
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
@synchronized(obj) {
NSLog(@"需要线程同步的操作1 开始");
sleep(3);
NSLog(@"需要线程同步的操作1 结束");
}
});
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
sleep(1);
@synchronized(obj) {
NSLog(@"需要线程同步的操作2");
}
});
上面结果的执行结果为:
2016-06-29 20:48:35.747 SafeMultiThread[35945:580107] 需要线程同步的操作1 开始
2016-06-29 20:48:38.748 SafeMultiThread[35945:580107] 需要线程同步的操作1 结束
2016-06-29 20:48:38.749 SafeMultiThread[35945:580118] 需要线程同步的操作2
@synchronized(obj)指令使用的obj为该锁的唯一标识,只有当标识相同时,才为满足互斥,如果线程2中的@synchronized(obj)改为@synchronized(self),刚线程2就不会被阻塞,@synchronized指令实现锁的优点就是我们不需要在代码中显式的创建锁对象,便可以实现锁的机制,但作为一种预防措施,@synchronized块会隐式的添加一个异常处理例程来保护代码,该处理例程会在异常抛出的时候自动的释放互斥锁。所以如果不想让隐式的异常处理例程带来额外的开销,你可以考虑使用锁对象。
条件信号量dispatch_semaphore
dispatch_semaphore_t signal = dispatch_semaphore_create(1);
dispatch_time_t overTime = dispatch_time(DISPATCH_TIME_NOW, 3 * NSEC_PER_SEC);
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
dispatch_semaphore_wait(signal, overTime);
NSLog(@"需要线程同步的操作1 开始");
sleep(2);
NSLog(@"需要线程同步的操作1 结束");
dispatch_semaphore_signal(signal);
});
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
sleep(1);
dispatch_semaphore_wait(signal, overTime);
NSLog(@"需要线程同步的操作2");
dispatch_semaphore_signal(signal);
});
2016-06-29 20:47:52.324 SafeMultiThread[35945:579032] 需要线程同步的操作1 开始
2016-06-29 20:47:55.325 SafeMultiThread[35945:579032] 需要线程同步的操作1 结束
2016-06-29 20:47:55.326 SafeMultiThread[35945:579033] 需要线程同步的操作2
dispatch_semaphore_tGCD中信号量,也可以解决资源抢占问题,支持信号通知和信号等待。每当发送一个信号通知,则信号量+1;每当发送一个等待信号时信号量-1,;如果信号量为0则信号会处于等待状态,直到信号量大于0开始执行。
条件锁NSConditionLock
NSConditionLock 可以称为条件锁,只有 condition 参数与初始化时候的 condition 相等,lock 才能正确进行加锁操作。而 unlockWithCondition: 并不是当 Condition 符合条件时才解锁,而是解锁之后,修改 Condition 的值,
条件锁NSCondition
NSCondition 的对象实际上作为一个锁和一个线程检查器,锁上之后其它线程也能上锁,而之后可以根据条件决定是否继续运行线程,即线程是否要进入 waiting 状态,经测试,NSCondition 并不会像上文的那些锁一样,先轮询,而是直接进入 waiting 状态,当其它线程中的该锁执行 signal 或者 broadcast 方法时,线程被唤醒,继续运行之后的方法。
参考
iOS中保证线程安全的几种方式与性能对比
iOS多线程-各种线程锁的简单介绍
深入理解 iOS 开发中的锁