永磁交流伺服电动机的定子磁场由定子的三相绕组的磁势( 或磁动势) 产生的,根据电动机旋转磁场理论可知,向对称的三相绕组中通以对称的三相正弦电流时,就会产生合成磁势,它是一个在空间以 ω 速度旋转的空间矢量。如果用磁势或电流空间矢量来描述等效的三相磁场、两相磁场和旋转直流磁场,并对它们进行坐标变换,就称为矢量坐标变换。Clarke变换是三相平面坐标系0ABC 向两相平面直角坐标系 0 α β 0\alpha \beta 0αβ的转换。
在复平面上的矢量 v ⃗ \vec{v} v总能够用互差 120 度的 abc 三轴系中的分量 x a {{x}_{a}} xa、 x b {{x}_{b}} xb、 x c {{x}_{c}} xc等效表示(a 轴与复平面的实轴重合),如下所示( x ⃗ \vec{x} x和 x ⃗ 0 {{\vec{x}}_{0}} x0将合成矢量 v ⃗ \vec{v} v)。
( 1-1 ) x ⃗ = k ( x a + ρ x b + ρ 2 x c ) \vec{x}\text{ }=k({{x}_{a}}+\rho {{x}_{b}}+\text{ }{{\rho }^{\text{2}}}{{x}_{c}})\tag{ 1-1 } x =k(xa+ρxb+ ρ2xc)( 1-1 ) ( 1-2 ) x ⃗ 0 = k 0 ( x a + x b + x c ) {{\vec{x}}_{0}}\text{ }={{k}_{0}}({{x}_{a}}+{{x}_{b}}+{{x}_{c}})\tag{ 1-2 } x0 =k0(xa+xb+xc)( 1-2 )
其中, ρ = e j 2 3 π = − 1 2 + j 3 2 \rho ={{e}^{j\frac{2}{3}\pi }}=-\dfrac{1}{2}+j\dfrac{\sqrt{3}}{2} ρ=ej32π=−21+j23、 ρ 2 = e j 4 3 π = e − j 2 3 π = − 1 2 − j 3 2 {{\rho }^{2}}={{e}^{j\frac{4}{3}\pi }}={{e}^{-j\frac{2}{3}\pi }}=-\dfrac{1}{2}-j\dfrac{\sqrt{3}}{2} ρ2=ej34π=e−j32π=−21−j23; x ⃗ 0 {{\vec{x}}_{0}} x0的方向与复平面的实轴方向一致。所以有(1-2)式可表示为:
( 1-3 ) x 0 = k 0 ( x a + x b + x c ) {{x}_{0}}\text{ }={{k}_{0}}({{x}_{a}}+{{x}_{b}}+{{x}_{c}})\tag{ 1-3 } x0 =k0(xa+xb+xc)( 1-3 )写出(1-1)式的实部与虚部如下:
( 1-4 ) Re { x ⃗ } = k ( x a − 1 2 x b − 1 2 x c ) = k [ x a − 1 2 ( x b + x c ) ] ~\text{Re}\left\{ {\vec{x}} \right\}=k({{x}_{a}}-\dfrac{1}{2}{{x}_{b}}-\dfrac{1}{2}{{x}_{c}})=k[{{x}_{a}}-\dfrac{1}{2}({{x}_{b}}+{{x}_{c}})]\tag{ 1-4 } Re{x}=k(xa−21xb−21xc)=k[xa−21(xb+xc)]( 1-4 ) ( 1-5 ) Im { x ⃗ } = k 3 2 ( x b − x c ) \text{Im}\left\{ {\vec{x}} \right\}=k\dfrac{\sqrt{3}}{2}({{x}_{b}}-{{x}_{c}})\tag{ 1-5 } Im{x}=k23(xb−xc)( 1-5 )由(1-3)式可得:
( 1-6 ) x b + x c = x 0 k 0 − x a {{x}_{b}}+{{x}_{c}}=\dfrac{{{x}_{0}}}{{{k}_{0}}}-{{x}_{a}}\tag{ 1-6 } xb+xc=k0x0−xa( 1-6 ) 代入(1-6)到(1-4)式中可得:
( 1-7 ) Re { x ⃗ } = k [ x a − 1 2 ( x b + x c ) ] = k [ x a − 1 2 ( x 0 k 0 − x a ) ] = 3 2 k x a − 1 2 k x 0 k 0 ~\text{Re}\left\{ {\vec{x}} \right\}=k[{{x}_{a}}-\dfrac{1}{2}({{x}_{b}}+{{x}_{c}})]=k[{{x}_{a}}-\dfrac{1}{2}(\dfrac{{{x}_{0}}}{{{k}_{0}}}-{{x}_{a}})]=\dfrac{3}{2}k{{x}_{a}}-\dfrac{1}{2}\dfrac{k{{x}_{0}}}{{{k}_{0}}}\tag{ 1-7 } Re{x}=k[xa−21(xb+xc)]=k[xa−21(k0x0−xa)]=23kxa−21k0kx0( 1-7 ) 等幅值变换时,规定
( 1-8 ) Re { x ⃗ } = x a + x 0 ~\text{Re}\left\{ {\vec{x}} \right\}={{x}_{a}}+{{x}_{0}}\tag{ 1-8 } Re{x}=xa+x0( 1-8 )
代入(1-8)到(1-7)可得:
( 1-9 ) 3 2 k x a − 1 2 k x 0 k 0 = x a + x 0 ~\dfrac{3}{2}k{{x}_{a}}-\dfrac{1}{2}\dfrac{k{{x}_{0}}}{{{k}_{0}}}={{x}_{a}}+{{x}_{0}}\tag{ 1-9 } 23kxa−21k0kx0=xa+x0( 1-9 )
对比(1-9)式两端的 x a {{x}_{a}} xa和 x 0 {{x}_{0}} x0的系数可解得: k = 2 3 k=\dfrac{2}{3} k=32、 k 0 = 1 3 {{k}_{0}}=\dfrac{1}{3} k0=31。
将实轴用a 轴代替,虚轴用 b 轴代替,代入 k k k、 k 0 {{k}_{0}} k0到(1-3)(1-4)(1-5)得到 Clarke 变换的等幅值变换形式:
( 1-10 ) { x α = 2 3 [ x a − 1 2 ( x b + x c ) ] = 2 3 x a − 1 3 x b − 1 3 x c x β = 2 3 ⋅ 3 2 ( x b − x c ) = 3 3 ( x b − x c ) x 0 = 1 3 x a + 1 3 x b + 1 3 x c \begin{cases} {{x}_{\alpha }}=\dfrac{2}{3}[{{x}_{a}}-\dfrac{1}{2}({{x}_{b}}+{{x}_{c}})]=\dfrac{2}{3}{{x}_{a}}-\dfrac{1}{3}{{x}_{b}}-\dfrac{1}{3}{{x}_{c}} \\ {{x}_{\beta }}=\dfrac{2}{3}\cdot \dfrac{\sqrt{3}}{2}({{x}_{b}}-{{x}_{c}})=\dfrac{\sqrt{3}}{3}({{x}_{b}}-{{x}_{c}}) \\ {{x}_{0}}=\dfrac{1}{3}{{x}_{a}}+\dfrac{1}{3}{{x}_{b}}+\dfrac{1}{3}{{x}_{c}}\\ \end{cases} \tag{ 1-10 } ⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧xα=32[xa−21(xb+xc)]=32xa−31xb−31xcxβ=32⋅23(xb−xc)=33(xb−xc)x0=31xa+31xb+31xc( 1-10 )
写为矩阵形式为:
( 1-11 ) [ x α x β x 0 ] = 2 3 [ 1 − 1 2 − 1 2 0 3 2 − 3 2 1 2 1 2 1 2 ] [ x a x b x c ] \left[ \begin{matrix} {{x}_{\alpha }} \\ {{x}_{\beta }} \\ {{x}_{0}} \\ \end{matrix} \right]=\dfrac{2}{3}\left[ \begin{matrix} 1 & -\dfrac{1}{2} & -\dfrac{1}{2} \\ 0 & \dfrac{\sqrt{3}}{2} & -\dfrac{\sqrt{3}}{2} \\ \dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} \\ \end{matrix} \right]\left[ \begin{matrix} {{x}_{a}} \\ {{x}_{b}} \\ {{x}_{c}} \\ \end{matrix} \right]\tag{ 1-11 } ⎣⎡xαxβx0⎦⎤=32⎣⎢⎢⎢⎢⎡1021−212321−21−2321⎦⎥⎥⎥⎥⎤⎣⎡xaxbxc⎦⎤( 1-11 )
即,等幅值的Clarke变换矩阵为:
C C l a r k e = 2 3 [ 1 − 1 2 − 1 2 0 3 2 − 3 2 1 2 1 2 1 2 ] {{C}_{Clarke}}=\dfrac{2}{3}\left[ \begin{matrix} 1 & -\dfrac{1}{2} & -\dfrac{1}{2} \\ 0 & \dfrac{\sqrt{3}}{2} & -\dfrac{\sqrt{3}}{2} \\ \dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} \\ \end{matrix} \right] CClarke=32⎣⎢⎢⎢⎢⎡1021−212321−21−2321⎦⎥⎥⎥⎥⎤
等功率矢量坐标变换必须要遵循如下原则:
将原来坐标下的电压 u u u和电流 i i i变换为新坐标下的 u ′ {u}' u′和电流 i ′ {i}' i′。我们希望它们有相同的变换矩阵 C C C,因此有:
( 2-1 ) u = C u ′ u=C{u}'\tag{ 2-1 } u=Cu′( 2-1 ) ( 2-2 ) i = C i ′ i=C{i}'\tag{ 2-2 } i=Ci′( 2-2 )
为了能实现逆变换,变换矩阵 C C C必须存在逆矩阵 C − 1 {{C}^{-1}} C−1,因此变换矩阵 C C C必须是方阵,而且其行列式的值必须不等于零。因为 u = z i u=zi u=zi, z z z是阻抗矩阵,所以
( 2-3 ) u ′ = C − 1 u = C − 1 z i = C − 1 z C i ′ = z ′ i ′ u'={{C}^{-1}}u={{C}^{-1}}zi={{C}^{-1}}z\text{ }Ci'=\text{ }z'i'\tag{ 2-3 } u′=C−1u=C−1zi=C−1z Ci′= z′i′( 2-3 )
式中,z’是变换后的阻抗矩阵,而它为
( 2-4 ) z ′ = C − 1 z C z'={{C}^{-1}}z\text{ }C\tag{ 2-4 } z′=C−1z C( 2-4 ) 为了满足功率不变的原则,在一个坐标下的电功率 i T u = u 1 i 1 + u 2 i 2 + … + u n i n {{i}^{T}}u={{u}_{1}}{{i}_{1}}+\text{ }{{u}_{2}}{{i}_{2}}+\text{ }\ldots \text{ }+\text{ }{{u}_{n}}{{i}_{n}} iTu=u1i1+ u2i2+ … + unin应该等于另一坐标下的电功率 i T ′ u ′ = u 1 ′ i 1 ′ + u 2 ′ i 2 ′ + … + u n ′ i n ′ {{i}^{T}}'u'={{u}_{1}}'{{i}_{1}}'+{{u}_{2}}'{{i}_{2}}'+\ldots +{{u}_{n}}'{{i}_{n}}' iT′u′=u1′i1′+u2′i2′+…+un′in′,即
( 2-5 ) i T u = i T ′ u ′ {{i}^{T}}u={{i}^{T}}'u'\tag{ 2-5 } iTu=iT′u′( 2-5 ) 而
( 2-6 ) i T u = ( C i ′ ) T C u ′ = i T ′ C T C u ′ {{i}^{T}}u={{\left( Ci' \right)}^{T}}Cu'={{i}^{T}}'{{C}^{T}}Cu'\tag{ 2-6 } iTu=(Ci′)TCu′=iT′CTCu′( 2-6 )
为了使式( 2-5) 与式(2- 6) 相同,必须有
( 2-7 ) C T C = I 或 C T = C − 1 {{C}^{T}}C\text{ }=\text{ }I \ 或 \ {{C}^{T}}=\text{ }{{C}^{-1}}\tag{ 2-7 } CTC = I 或 CT= C−1( 2-7 )
因此,变换矩阵 C 应该是一个正交矩阵。
在以上公式中,其中 C − 1 {{C}^{-1}} C−1为 C C C的逆阵; i T {{i}^{T}} iT为 i i i的转置矩阵; i T ′ ~{{i}^{T}}' iT′为 i ′ {i}' i′的转置矩阵; C T {{C}^{T}} CT为 C C C的转置矩阵; I I I为单位矩阵; z z z、 z ′ {z}' z′分别为阻抗矩阵; u,u’,i,i’分别为电压、电流列或行矩阵; 同时,依矩阵运算法则有: C − 1 C = I {{C}^{-1}}C=I C−1C=I; ( C i ′ ) T = i T ′ C T {{\left( Ci' \right)}^{T}}={{i}^{T}}'{{C}^{T}} (Ci′)T=iT′CT; ( k C ) T = k C T {{\left( kC \right)}^{T}}=k{{C}^{T}} (kC)T=kCT; u = C u ′ u=C{u}' u=Cu′,则有 u ′ = C − 1 u {u}'={{C}^{-1}}u u′=C−1u。
图1为定子三相电动机绕组 A、B、C 的磁势矢量和两相电动机绕组 α \alpha α、 β \beta β的磁势矢量的空间位置关系。其中选定 A 轴与$\alpha $轴重合。根据矢量坐标变换原则,两者的磁场应该完全等效,即合成磁势矢量分别在两个坐标系坐标轴上的投影应该相等,如图 1 所示。
因此有:
( 2-8 ) { N 2 i α = N 3 i A + N 3 i B cos 120 ∘ + N 3 i C cos ( − 120 ∘ ) N 2 i β = 0 + N 3 i B sin 120 ∘ + N 3 i C sin ( 120 ∘ ) \begin{cases} {{N}_{2}}{{i}_{\alpha }}=\text{ }{{N}_{3}}{{i}_{A}}+\text{ }{{N}_{3}}{{i}_{B}}\cos 120{}^\circ \text{ }+\text{ }{{N}_{3}}{{i}_{C}}\cos (-120{}^\circ ) \\ {{N}_{2}}{{i}_{\beta }}=\text{ }0\text{ }+\text{ }{{N}_{3}}{{i}_{B}}\sin 120{}^\circ \text{ }+\text{ }{{N}_{3}}{{i}_{C}}\sin (120{}^\circ ) \\ \end{cases}\tag{ 2-8 } {N2iα= N3iA+ N3iBcos120∘ + N3iCcos(−120∘)N2iβ= 0 + N3iBsin120∘ + N3iCsin(120∘)( 2-8 )
也即:
( 2-9 ) { i α = N 3 N 2 i A − 1 2 i B − 1 2 i C i β = N 3 N 2 0 + 3 2 i B 3 2 i C \begin{cases} {{i}_{\alpha }}=\dfrac{{{N}_{3}}}{{{N}_{2}}}{{i}_{A}}-\dfrac{1}{2}{{i}_{B}}-\dfrac{1}{2}{{i}_{C}} \\ {{i}_{\beta }}=\dfrac{{{N}_{3}}}{{{N}_{2}}}0\text{ }+\dfrac{\sqrt{3}}{2}{{i}_{B}}\dfrac{\sqrt{3}}{2}{{i}_{C}} \\ \end{cases}\tag{ 2-9 } ⎩⎪⎨⎪⎧iα=N2N3iA−21iB−21iCiβ=N2N30 +23iB23iC( 2-9 )
式中,N2、N3分别表示三相电动机和两相电动机定子每相绕组的有效匝数。式(2-9) 用矩阵表示,即
( 2-10 ) [ i α i β ] = N 3 N 2 [ 1 − 1 2 − 1 2 0 3 2 3 2 ] [ i A i B i C ] \left[ \begin{matrix} {{i}_{\alpha }} \\ {{i}_{\beta }} \\ \end{matrix} \right]=\dfrac{{{N}_{3}}}{{{N}_{2}}}\left[ \begin{matrix} \begin{matrix} 1 & -\dfrac{1}{2} & -\dfrac{1}{2} \\ \end{matrix} \\ \begin{matrix} 0 & \dfrac{\sqrt{3}}{2} & \dfrac{\sqrt{3}}{2} \\ \end{matrix} \\ \end{matrix} \right]\left[ \begin{matrix} {{i}_{A}} \\ {{i}_{B}} \\ {{i}_{C}} \\ \end{matrix} \right]\tag{ 2-10 } [iαiβ]=N2N3⎣⎢⎡1−21−2102323⎦⎥⎤⎣⎡iAiBiC⎦⎤( 2-10 )
转换矩阵 [ 1 − 1 2 − 1 2 0 3 2 3 2 ] \left[ \begin{matrix} \begin{matrix} 1 & -\dfrac{1}{2} & -\dfrac{1}{2} \\ \end{matrix} \\ \begin{matrix} 0 & \dfrac{\sqrt{3}}{2} & \dfrac{\sqrt{3}}{2} \\ \end{matrix} \\ \end{matrix} \right] ⎣⎢⎡1−21−2102323⎦⎥⎤不是方阵,因此不能求逆阵。所以需要引进一个独立 i α {{i}_{\alpha }} iα和 i β {{i}_{\beta }} iβ的新变量 i 0 {{i}_{0}} i0,称它为零轴电流。零轴是同时垂直于 α \alpha α和 β \beta β轴的轴,因此形成 α − β − 0 \alpha-\beta-0 α−β−0轴坐标系。定义:
( 2-11 ) { N 2 i 0 = k ( N 3 i A + N 3 i B + N 3 i C ) i 0 = N 3 N 2 k ( i A + i B + i C ) \begin{cases} {{N}_{2}}{{i}_{0}}=k({{N}_{3}}{{i}_{A}}+{{N}_{3}}{{i}_{B}}+{{N}_{3}}{{i}_{C}})\\ {{i}_{0}}=\dfrac{{{N}_{3}}}{{{N}_{2}}}k\left( {{i}_{A}}+\text{ }{{i}_{B}}+\text{ }{{i}_{C}} \right) \end{cases}\tag{ 2-11 } ⎩⎨⎧N2i0=k(N3iA+N3iB+N3iC)i0=N2N3k(iA+ iB+ iC)( 2-11 )
式中,k 为待定系数。所以,式(2-10 改写成:
( 2-12 ) [ i α i β i 0 ] = N 3 N 2 [ 1 − 1 2 − 1 2 0 3 2 3 2 k k k ] [ i A i B i C ] \left[ \begin{matrix} {{i}_{\alpha }} \\ {{i}_{\beta }} \\ {{i}_{0}} \\ \end{matrix} \right]=\dfrac{{{N}_{3}}}{{{N}_{2}}}\left[ \begin{matrix} 1 & -\dfrac{1}{2} & -\dfrac{1}{2} \\ 0 & \dfrac{\sqrt{3}}{2} & \dfrac{\sqrt{3}}{2} \\ k & k & k \\ \end{matrix} \right]\left[ \begin{matrix} {{i}_{A}} \\ {{i}_{B}} \\ {{i}_{C}} \\ \end{matrix} \right]\tag{ 2-12 } ⎣⎡iαiβi0⎦⎤=N2N3⎣⎢⎢⎢⎡10k−2123k−2123k⎦⎥⎥⎥⎤⎣⎡iAiBiC⎦⎤( 2-12 ) 式中,定义矩阵 C 为:
( 2-13 ) C = N 3 N 2 [ 1 − 1 2 − 1 2 0 3 2 3 2 k k k ] C=\dfrac{{{N}_{3}}}{{{N}_{2}}}\left[ \begin{matrix} 1 & -\dfrac{1}{2} & -\dfrac{1}{2} \\ 0 & \dfrac{\sqrt{3}}{2} & \dfrac{\sqrt{3}}{2} \\ k & k & k \\ \end{matrix} \right]\tag{ 2-13 } C=N2N3⎣⎢⎢⎢⎡10k−2123k−2123k⎦⎥⎥⎥⎤( 2-13 )
其 C C C的转置矩阵 C T {{C}^{T}} CT为:
( 2-14 ) C T = N 3 N 2 [ 1 0 k − 1 2 3 2 k − 1 2 3 2 k ] {{C}^{T}}=\dfrac{{{N}_{3}}}{{{N}_{2}}}\left[ \begin{matrix} 1 & 0 & k \\ -\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} & k \\ -\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} & k \\ \end{matrix} \right]\tag{ 2-14 } CT=N2N3⎣⎢⎢⎢⎡1−21−2102323kkk⎦⎥⎥⎥⎤( 2-14 )
求其 C C C的逆阵 C − 1 {{C}^{-1}} C−1为:
( 2-15 ) C − 1 = 2 N 2 3 N 3 [ 1 0 1 2 k − 1 2 3 2 1 2 k − 1 2 3 2 1 2 k ] {{C}^{-1}}=\dfrac{2{{N}_{2}}}{3{{N}_{3}}}\left[ \begin{matrix} 1 & 0 & \dfrac{1}{2k} \\ -\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} & \dfrac{1}{2k} \\ -\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} & \dfrac{1}{2k} \\ \end{matrix} \right]\tag{ 2-15 } C−1=3N32N2⎣⎢⎢⎢⎢⎢⎡1−21−21023232k12k12k1⎦⎥⎥⎥⎥⎥⎤( 2-15 )
为了满足功率不变变换原则,有 C T = C − 1 {{C}^{T}}=\text{ }{{C}^{-1}} CT= C−1。令式(2-14) 和式(2-15) 相等,则有: 2 N 2 3 N 3 = N 3 N 2 ; 1 2 k = k \dfrac{2{{N}_{2}}}{3{{N}_{3}}}=\dfrac{{{N}_{3}}}{{{N}_{2}}};\dfrac{1}{2k}=k 3N32N2=N2N3;2k1=k
可分别求得:
( 2-16 ) N 3 N 2 = 2 3 , k = 1 2 \dfrac{{{N}_{3}}}{{{N}_{2}}}=\sqrt{\dfrac{2}{3}},k=\sqrt{\dfrac{1}{2}}\tag{ 2-16 } N2N3=32,k=21( 2-16 )
将式(2-16) 代入式(2- 13) 和式(2- 15) ,则得:
( 2-17 ) C = 2 3 [ 1 − 1 2 − 1 2 0 3 2 3 2 1 2 1 2 1 2 ] C=\sqrt{\dfrac{2}{3}}\left[ \begin{matrix} 1 & -\dfrac{1}{2} & -\dfrac{1}{2} \\ 0 & \dfrac{\sqrt{3}}{2} & \dfrac{\sqrt{3}}{2} \\ \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \\ \end{matrix} \right]\tag{ 2-17 } C=32⎣⎢⎢⎢⎢⎢⎡1021−212321−212321⎦⎥⎥⎥⎥⎥⎤( 2-17 )
( 2-18 ) C − 1 = 2 3 [ 1 0 1 2 − 1 2 3 2 1 2 − 1 2 3 2 1 2 ] {{C}^{-1}}=\sqrt{\dfrac{2}{3}}\left[ \begin{matrix} 1 & 0 & \dfrac{1}{\sqrt{2}} \\ -\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} & \dfrac{1}{\sqrt{2}} \\ -\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} & \dfrac{1}{\sqrt{2}} \\ \end{matrix} \right]\tag{ 2-18 } C−1=32⎣⎢⎢⎢⎢⎢⎢⎡1−21−2102323212121⎦⎥⎥⎥⎥⎥⎥⎤( 2-18 )
因此: Clarke 变换( 或 3 /2 变换) 式为:
( 2-19 ) [ i α i β i 0 ] = C [ i A i B i C ] = 2 3 [ 1 − 1 2 − 1 2 0 3 2 3 2 1 2 1 2 1 2 ] [ i A i B i C ] \left[ \begin{matrix} {{i}_{\alpha }} \\ {{i}_{\beta }} \\ {{i}_{0}} \\ \end{matrix} \right]=C\left[ \begin{matrix} {{i}_{A}} \\ {{i}_{B}} \\ {{i}_{C}} \\ \end{matrix} \right]=\sqrt{\frac{2}{3}}\left[ \begin{matrix} 1 & -\dfrac{1}{2} & -\dfrac{1}{2} \\ 0 & \dfrac{\sqrt{3}}{2} & \dfrac{\sqrt{3}}{2} \\ \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \\ \end{matrix} \right]\left[ \begin{matrix} {{i}_{A}} \\ {{i}_{B}} \\ {{i}_{C}} \\ \end{matrix} \right]\tag{ 2-19 } ⎣⎡iαiβi0⎦⎤=C⎣⎡iAiBiC⎦⎤=32⎣⎢⎢⎢⎢⎢⎡1021−212321−212321⎦⎥⎥⎥⎥⎥⎤⎣⎡iAiBiC⎦⎤( 2-19 )
Clarke逆变换为:
[ i A i B i C ] = C − 1 C [ i A i B i C ] = C − 1 [ i α i β i 0 ] = 2 3 [ 1 0 1 2 − 1 2 3 2 1 2 − 1 2 3 2 1 2 ] [ i α i β i 0 ] \left[ \begin{matrix} {{i}_{A}} \\ {{i}_{B}} \\ {{i}_{C}} \\ \end{matrix} \right]={{C}^{-1}}C\left[ \begin{matrix} {{i}_{A}} \\ {{i}_{B}} \\ {{i}_{C}} \\ \end{matrix} \right]={{C}^{-1}}\left[ \begin{matrix} {{i}_{\alpha }} \\ {{i}_{\beta }} \\ {{i}_{0}} \\ \end{matrix} \right]=\sqrt{\dfrac{2}{3}}\left[ \begin{matrix} 1 & 0 & \dfrac{1}{\sqrt{2}} \\ -\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} & \dfrac{1}{\sqrt{2}} \\ -\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} & \dfrac{1}{\sqrt{2}} \\ \end{matrix} \right]\left[ \begin{matrix} {{i}_{\alpha }} \\ {{i}_{\beta }} \\ {{i}_{0}} \\ \end{matrix} \right] ⎣⎡iAiBiC⎦⎤=C−1C⎣⎡iAiBiC⎦⎤=C−1⎣⎡iαiβi0⎦⎤=32⎣⎢⎢⎢⎢⎢⎢⎡1−21−2102323212121⎦⎥⎥⎥⎥⎥⎥⎤⎣⎡iαiβi0⎦⎤
(1) a b c → d q 0 abc\to dq0 abc→dq0:
C = C a b c → d q 0 = 2 3 [ cos θ cos ( θ − 2 π 3 ) cos ( θ + 2 π 3 ) − sin θ − sin ( θ − 2 π 3 ) − sin ( θ + 2 π 3 ) 1 2 1 2 1 2 ] C={{C}_{abc\to dq0}}=\dfrac{2}{3}\left[ \begin{matrix} \cos \theta & \cos (\theta -\dfrac{2\pi }{3}) & \cos (\theta +\dfrac{2\pi }{3}) \\ -\sin \theta & -\sin (\theta -\dfrac{2\pi }{3}) & -\sin (\theta +\dfrac{2\pi }{3}) \\ \dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} \\ \end{matrix} \right] C=Cabc→dq0=32⎣⎢⎢⎢⎢⎡cosθ−sinθ21cos(θ−32π)−sin(θ−32π)21cos(θ+32π)−sin(θ+32π)21⎦⎥⎥⎥⎥⎤
(2) a b c → α β 0 abc\to \alpha \beta 0 abc→αβ0:
C C l a r k e = C a b c → α β 0 = 2 3 [ cos 0 cos ( − 2 π 3 ) cos ( + 2 π 3 ) − sin 0 − sin ( − 2 π 3 ) − sin ( + 2 π 3 ) 1 2 1 2 1 2 ] = 2 3 [ 1 − 1 2 − 1 2 0 3 2 − 3 2 1 2 1 2 1 2 ] {{C}_{Clarke}}=C_{abc\to \alpha \beta 0}^{{}}=\dfrac{2}{3}\left[ \begin{matrix} \cos 0 & \cos (-\dfrac{2\pi }{3}) & \cos (+\dfrac{2\pi }{3}) \\ -\sin 0 & -\sin (-\dfrac{2\pi }{3}) & -\sin (+\dfrac{2\pi }{3}) \\ \dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} \\ \end{matrix} \right]=\dfrac{2}{3}\left[ \begin{matrix} 1 & -\dfrac{1}{2} & -\dfrac{1}{2} \\ 0 & \dfrac{\sqrt{3}}{2} & -\dfrac{\sqrt{3}}{2} \\ \dfrac{1}{2} & \dfrac{1}{2} & \dfrac{1}{2} \\ \end{matrix} \right] CClarke=Cabc→αβ0=32⎣⎢⎢⎢⎢⎡cos0−sin021cos(−32π)−sin(−32π)21cos(+32π)−sin(+32π)21⎦⎥⎥⎥⎥⎤=32⎣⎢⎢⎢⎢⎡1021−212321−21−2321⎦⎥⎥⎥⎥⎤
(3) α β → d q \alpha \beta \to dq αβ→dq:
C P a r k = C α β → d q = [ cos θ sin θ − sin θ cos θ ] {{C}_{Park}}=C_{\alpha \beta \to dq}^{{}}=\left[ \begin{matrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \\ \end{matrix} \right] CPark=Cαβ→dq=[cosθ−sinθsinθcosθ]
C P a r k − 1 = C d q → α β = [ cos θ − sin θ sin θ cos θ ] C_{Park}^{-1}=C_{dq\to \alpha \beta }^{{}}=\left[ \begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{matrix} \right] CPark−1=Cdq→αβ=[cosθsinθ−sinθcosθ]
(1) a b c → d q 0 abc\to dq0 abc→dq0:
C = C a b c → d q 0 = 2 3 [ cos θ cos ( θ − 2 π 3 ) cos ( θ + 2 π 3 ) − sin θ − sin ( θ − 2 π 3 ) − sin ( θ + 2 π 3 ) 1 2 1 2 1 2 ] C=C_{abc\to dq0}^{{}}=\sqrt{\dfrac{2}{3}}\left[ \begin{matrix} \cos \theta & \cos (\theta -\dfrac{2\pi }{3}) & \cos (\theta +\dfrac{2\pi }{3}) \\ -\sin \theta & -\sin (\theta -\dfrac{2\pi }{3}) & -\sin (\theta +\dfrac{2\pi }{3}) \\ \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \\ \end{matrix} \right] C=Cabc→dq0=32⎣⎢⎢⎢⎢⎡cosθ−sinθ21cos(θ−32π)−sin(θ−32π)21cos(θ+32π)−sin(θ+32π)21⎦⎥⎥⎥⎥⎤
C d q 0 → a b c = ( C a b c → d q 0 ) − 1 = ( C a b c → d q 0 ) T C_{dq0\to abc}^{{}}={{({{C}_{abc\to dq0}})}^{-1}}={{({{C}_{abc\to dq0}})}^{T}} Cdq0→abc=(Cabc→dq0)−1=(Cabc→dq0)T
(2) a b c → α β 0 abc\to \alpha \beta 0 abc→αβ0:
C C l a r k e = C a b c → α β 0 = 2 3 [ cos 0 cos ( − 2 π 3 ) cos ( + 2 π 3 ) − sin 0 − sin ( − 2 π 3 ) − sin ( + 2 π 3 ) 1 2 1 2 1 2 ] = 2 3 [ 1 − 1 2 − 1 2 0 3 2 − 3 2 1 2 1 2 1 2 ] {{C}_{Clarke}}=C_{abc\to \alpha \beta 0}^{{}}=\sqrt{\dfrac{2}{3}}\left[ \begin{matrix} \cos 0 & \cos (-\dfrac{2\pi }{3}) & \cos (+\dfrac{2\pi }{3}) \\ -\sin 0 & -\sin (-\dfrac{2\pi }{3}) & -\sin (+\dfrac{2\pi }{3}) \\ \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \\ \end{matrix} \right]=\sqrt{\dfrac{2}{3}}\left[ \begin{matrix} 1 & -\dfrac{1}{2} & -\dfrac{1}{2} \\ 0 & \dfrac{\sqrt{3}}{2} & -\dfrac{\sqrt{3}}{2} \\ \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} & \dfrac{1}{\sqrt{2}} \\ \end{matrix} \right] CClarke=Cabc→αβ0=32⎣⎢⎢⎢⎢⎡cos0−sin021cos(−32π)−sin(−32π)21cos(+32π)−sin(+32π)21⎦⎥⎥⎥⎥⎤=32⎣⎢⎢⎢⎢⎢⎡1021−212321−21−2321⎦⎥⎥⎥⎥⎥⎤
(3) α β → d q \alpha \beta \to dq αβ→dq:
C P a r k = C α β → d q = [ cos θ sin θ − sin θ cos θ ] {{C}_{Park}}=C_{\alpha \beta \to dq}^{{}}=\left[ \begin{matrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \\ \end{matrix} \right] CPark=Cαβ→dq=[cosθ−sinθsinθcosθ]
C P a r k − 1 = C d q → α β = [ cos θ − sin θ sin θ cos θ ] C_{Park}^{-1}=C_{dq\to \alpha \beta }^{{}}=\left[ \begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{matrix} \right] CPark−1=Cdq→αβ=[cosθsinθ−sinθcosθ]
这里提供本文内容的文档下载地址:
本文为原创,转载请联系本作者。