文章目录

    • 概念
      • 高度和深度
      • 树的存储结构
      • 斜树
      • 满二叉树
      • 完全二叉树
      • 二叉树的存储结构
      • 遍历方法
    • 二叉排序树
      • 概念
      • 增删改查操作:
    • 哈夫曼数压缩
      • 基本思想
    • 平衡二叉树
      • 概念
      • 左旋
      • 左平衡树
      • 右平衡树
    • 红黑树

概念

树_第1张图片

高度和深度

树_第2张图片

树的存储结构

  1. 双亲表示法

    树_第3张图片

  2. 孩子表示法(最常用)

    树_第4张图片

    首先得知道这棵树的度,为每个节点的长度。

  3. 双亲孩子表示法

    树_第5张图片

  4. 孩子兄弟表示法

    树_第6张图片

斜树

树_第7张图片

满二叉树

树_第8张图片

完全二叉树

树_第9张图片

二叉树的存储结构

  1. 数组存放二叉树(适合完全二叉树,能利用所有空间,且内存连续)

    树_第10张图片

  2. 链式存储二叉树

    树_第11张图片

遍历方法

class Node<T> {

    T data;
    Node<T> leftChild;
    Node<T> rightChild;

    public Node(T data, Node<T> leftChild, Node<T> rightChild) {
        this.data = data;
        this.leftChild = leftChild;
        this.rightChild = rightChild;
    }

    @Override
    public String toString() {
        return "Node{" +
                "data=" + data +
                ", leftChild=" + leftChild +
                ", rightChild=" + rightChild +
                '}';
    }
}

/**
 *
 *         0
 *     1       2
 *   3   4  5    6
 * 7  8 9 10
 */
public class _1Tree {

    @Test
    public void testTree() {
        // 生成一个从左到右从上到下递增的完全二叉树
        Node<String> root = new Node<>("0", null, null);
        Node<String> node1 = new Node<>("1", null, null);
        Node<String> node2 = new Node<>("2", null, null);
        Node<String> node3 = new Node<>("3", null, null);
        Node<String> node4 = new Node<>("4", null, null);
        Node<String> node5 = new Node<>("5", null, null);
        Node<String> node6 = new Node<>("6", null, null);
        Node<String> node7 = new Node<>("7", null, null);
        Node<String> node8 = new Node<>("8", null, null);
        Node<String> node9 = new Node<>("9", null, null);
        Node<String> node10 = new Node<>("10", null, null);

        root.leftChild = node1;
        root.rightChild = node2;
        node1.leftChild = node3;
        node1.rightChild = node4;
        node2.leftChild = node5;
        node2.rightChild = node6;
        node3.leftChild = node7;
        node3.rightChild = node8;
        node4.leftChild = node9;
        node4.rightChild = node10;

        midOrderTraverse(root);
        System.out.println();
        proOrderTraverse(root);
        System.out.println();
        postOrderTraverse(root);
    }

    // 中序遍历
    private void midOrderTraverse(Node root) {
        if (root == null) {
            return;
        }
        midOrderTraverse(root.leftChild);
        System.out.print(root.data + " ");
        midOrderTraverse(root.rightChild);
    }

    // 前序遍历
    private void proOrderTraverse(Node root) {
        if (root == null) {
            return;
        }
        System.out.print(root.data + " ");
        proOrderTraverse(root.leftChild);
        proOrderTraverse(root.rightChild);
    }

    // 后序遍历
    private void postOrderTraverse(Node root) {
        if (root == null) {
            return;
        }
        postOrderTraverse(root.leftChild);
        postOrderTraverse(root.rightChild);
        System.out.print(root.data + " ");
    }
}

二叉排序树

概念

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-RVfcvL5K-1578637542801)(C:\Users\lizj\AppData\Roaming\Typora\typora-user-images\1577780974665.png)]

增删改查操作:

class TreeNode {
    int data;
    TreeNode leftChild;
    TreeNode rightChild;
    TreeNode parent;

    TreeNode(int data) {
        this.data = data;
    }

}

public class _2SortBinaryTree {
    private TreeNode root;

    @Test
    public void testSortBinaryTree() {
        root = new TreeNode(5);

        int[] array = new int[]{3, 2, 5, 1, 3, 4, 6, 7, 1, 19, 20, 12, 15};

        for (int i : array) {
            putNode(i);
        }
        midOrderTraverse(root);
        System.out.println();
        TreeNode searchTreeNode = searchNode(15);
        if (searchTreeNode != null) {
            System.out.println(searchTreeNode.data);
        } else {
            System.out.println("没有查找到数据");
        }
        System.out.println("删除后的数据:");
        delNode(searchTreeNode);
        midOrderTraverse(root);
    }

    private TreeNode putNode(int data) {
        // 生成一个新节点
        TreeNode treeNode = new TreeNode(data);
        if (root == null) {
            root = treeNode;
            return treeNode;
        }
        // 记录父节点,进行插入
        TreeNode parent = null;
        TreeNode tempRoot = root;
        while (tempRoot != null) {
            parent = tempRoot;
            if (data < tempRoot.data) {
                tempRoot = tempRoot.leftChild;
            } else if (data > tempRoot.data) {
                tempRoot = tempRoot.rightChild;
            } else {
                // 是重复值,不理会
                return tempRoot;
            }
        }
        treeNode.parent = parent;
        if (data < parent.data) {
            parent.leftChild = treeNode;
        } else {
            parent.rightChild = treeNode;
        }
        return treeNode;
    }


    private void midOrderTraverse(TreeNode root) {
        if (root == null) {
            return;
        }
        midOrderTraverse(root.leftChild);
        System.out.print(root.data + " ");
        midOrderTraverse(root.rightChild);
    }

    private TreeNode searchNode(int data) {
        TreeNode tempRoot = root;
        while (tempRoot != null) {
            if (data > tempRoot.data) {
                tempRoot = tempRoot.rightChild;
            } else if (data < tempRoot.data) {
                tempRoot = tempRoot.leftChild;
            } else {
                return tempRoot;
            }
        }
        return null;
    }

    /**
     * 删除操作相对麻烦,考虑如下几种情况:
     * 1. 叶子
     * 2. 只有左孩子
     * 3. 只有右孩子
     * 4. 俩孩子都有
     * 5. 是跟节点
     * 6. 不存在
     *
     * @param toRemoveNode 要删除的节点
     * @return 删除的节点
     */
    /**
     * 删除节点
     * 要删除的节点在树上是一定存在的才删除
     */
    public void delNode(TreeNode node){
        if(node==null){
            throw new NoSuchElementException();
        }else{
            //先得到父亲,方便后面的操作
            TreeNode parent=node.parent;
            //1.叶子
            if(node.leftChild==null && node.rightChild==null){
                //特别的情况:1.树上只有一个节点或是空树
                if(parent==null){
                    root=null;
                }else if(parent.rightChild==node){
                    parent.rightChild=null;
                }else if(parent.leftChild==node){
                    parent.leftChild=null;
                }
                node.parent=null;
            }else if(node.leftChild!=null && node.rightChild==null){
                //2.只有左孩子
                if(parent==null){//如果要删除的是根
                    node.parent=null;
                    node.leftChild.parent=null;
                    root=node.leftChild;
                }else{
                    if(parent.leftChild==node){//要删除的节点是父亲的左边
                        node.leftChild.parent=parent;
                        parent.leftChild=node.leftChild;

                    }else{//要删除的节点是父亲的右边
                        node.leftChild.parent=parent;
                        parent.rightChild=node.leftChild;
                    }
                    node.parent=null;
                }

            }else if(node.leftChild==null && node.rightChild!=null){
                //3.只有右孩子
                if(parent==null){//如果要删除的是根
                    node.parent=null;
                    node.rightChild.parent=null;
                    root=node.rightChild;
                }else{
                    if(parent.leftChild==node){//要删除的节点是父亲的左边
                        node.rightChild.parent=parent;
                        parent.leftChild=node.rightChild;
                    }else{//要删除的节点是父亲的右边
                        node.rightChild.parent=parent;
                        parent.rightChild=node.rightChild;
                    }
                    node.parent=null;
                }
            }else{//4。有左右两个孩子
                if(node.rightChild.leftChild==null){//1.如果被删除节点的右子树的左子树为空,就直接补上右子树
                    node.rightChild.leftChild=node.leftChild;
                    if(parent==null){
                        root=node.rightChild;
                    }else{
                        if(parent.leftChild==node){
                            parent.leftChild=node.rightChild;
                            //
                        }else{
                            parent.rightChild=node.rightChild;
                            //
                        }
                    }
                    node.parent=null;
                }else{//2.否则就要补上右子树的左子树上最小的一个
                    TreeNode leftNode=getMinLeftTreeNode(node.rightChild);
                    //1
                    leftNode.leftChild=node.leftChild;
                    //2
                    TreeNode leftNodeP=leftNode.parent;
                    leftNodeP.leftChild=leftNode.rightChild;
                    //3
                    leftNode.rightChild=node.rightChild;
                    //4
                    if(parent==null){
                        root=leftNode;
                    }else{
                        if(parent.leftChild==node){
                            parent.leftChild=leftNode;
                            //
                        }else{
                            parent.rightChild=leftNode;
                            //
                        }
                    }
                }
            }
        }
    }

    private TreeNode getMinLeftTreeNode(TreeNode node) {
        TreeNode curRoot=null;
        if(node==null){
            return null;
        }else{
            curRoot=node;
            while(curRoot.leftChild!=null){
                curRoot=curRoot.leftChild;
            }
        }
        return curRoot;
    }
}

哈夫曼数压缩

基本思想

将ASCII码字符根据权重转为二进制编码,权重越大的字符编码后所占位数越小。

树_第12张图片

树_第13张图片

生成后的哈夫曼树:

e:1 d:01 c:001 a:0000 b:0001

节省字位数:
8 ∗ ( 200 + 110 + 30 + 10 + 20 ) − ( 200 ∗ 1 + 110 ∗ 2 + 30 ∗ 3 + 4 ∗ 10 + 4 ∗ 20 ) = 2960 − 630 = 2330 8*(200+110+30+10+20) - (200*1+110*2+30*3+4*10+4*20)=2960-630=2330 8(200+110+30+10+20)(2001+1102+303+410+420)=2960630=2330
压缩了2960/630=4.6倍

可以看到,如果字符数越多且权重越均匀,则该算法压缩效果越差。

public class _5HuffmanTree {

    TreeNode root;

    public TreeNode createHuffmanTree(List<TreeNode<String>> list) {
        while (list.size() > 1) {
            Collections.sort(list);
            TreeNode left = list.get(0);
            TreeNode right = list.get(1);
            TreeNode parent = new TreeNode<>("P", left.weight + right.weight);
            parent.leftChild = left;
            left.parent = parent;
            parent.rightChild = right;
            right.parent = parent;
            list.remove(left);
            list.remove(right);
            list.add(parent);
        }
        root = list.get(0);
        return root;
    }

    public static class TreeNode<T> implements Comparable<TreeNode<T>> {

        T data;
        int weight;
        TreeNode leftChild;
        TreeNode rightChild;
        TreeNode parent;

        public TreeNode(T data, int weight) {
            this.data = data;
            this.weight = weight;
        }

        @Override
        public int compareTo(TreeNode<T> o) {
            if (this.weight > o.weight) {
                return 1;
            } else if (this.weight < o.weight) {
                return -1;
            }
            return 0;
        }
    }

    /**
     * 编码
     */
    public void getCode(TreeNode node) {
        TreeNode tNode = node;
        Stack<String> stack = new Stack<>();
        while (tNode != null && tNode.parent != null) {
            if (tNode.parent.leftChild == tNode) {
                stack.push("0");
            } else if (tNode.parent.rightChild == tNode) {
                stack.push("1");
            }
            tNode = tNode.parent;
        }
        while (!stack.isEmpty()) {
            System.out.print(stack.pop() + " ");
        }
    }

    private void showHuffman(TreeNode root) {
        LinkedList<TreeNode> list = new LinkedList<>();
        list.offer(root);
        while (!list.isEmpty()) {
            TreeNode node = list.poll();
            System.out.println(node.data);
            if (node.leftChild != null) {
                list.offer(node.leftChild);
            }
            if (node.rightChild != null) {
                list.offer(node.rightChild);
            }
        }
    }

    @Test
    public void test() {
        List<TreeNode<String>> list = new LinkedList<>();
        TreeNode<String> node1 = new TreeNode<>("a", 10);
        list.add(node1);
        list.add(new TreeNode<>("b", 20));

        TreeNode<String> node2 = new TreeNode<>("c", 50);
        list.add(node2);

        list.add(new TreeNode<>("d", 110));
        list.add(new TreeNode<>("e", 200));
        _5HuffmanTree huffmanTree = new _5HuffmanTree();
        huffmanTree.createHuffmanTree(list);
        huffmanTree.showHuffman(huffmanTree.root);
        huffmanTree.getCode(node2);
    }
}

P
P
e
P
d
P
c
a
b
0 0 1
Process finished with exit code 0

平衡二叉树

概念

平衡二叉树是一种二叉排序树,其中每一个节点的左子树和右子树高度差至多为1。

树_第14张图片

左旋

树_第15张图片

public class _6AVLBTree<E extends Comparable<E>> {
    Node<E> root;
    int size;
    int balance;

    public class Node<E extends Comparable<E>> {
        E element;

        // 平衡因子
        int balance;

        Node<E> left;
        Node<E> right;
        Node<E> parent;

        public Node(E element, Node<E> parent) {
            this.element = element;
            this.parent = parent;
        }

    }

    public void left_rotate(Node<E> x) {
        if (x != null) {
            // 先取到y
            Node<E> y = x.right;
            // 1. 把Y的左孩子作为X的右孩子
            x.right = y.left;
            if (y.left != null) {
                y.left.parent = x;
            }
            // 2. 把Y移动到X原来的位置
            y.parent = x.parent;
            if (x.parent == null) {
                root = y;
            } else {
                if (x.parent.left == x) {
                    x.parent.left = y;
                } else if (x.parent.right == x) {
                    x.parent.right = y;
                }
            }
            // 3. 把X移动到Y的左孩子
            y.left = x;
            x.parent = y;
        }
    }
}

左平衡树

树_第16张图片

右平衡树

树_第17张图片

树_第18张图片

public class _6AVLBTree<E extends Comparable<E>> {
    Node<E> root;
    int size = 0;
    private static final int LH = 1;
    private static final int RH = -1;
    private static final int EH = 0;

    public void left_rotate(Node<E> x) {
        if (x != null) {
            Node<E> y = x.right;//先取到Y结点
            // 1。把贝塔作为X的右孩子
            x.right = y.left;
            if (y.left != null) {
                y.left.parent = x;
            }
            // 2。把Y移到原来X的位置
            y.parent = x.parent;
            if (x.parent == null) {
                root = y;
            } else {
                if (x.parent.left == x) {
                    x.parent.left = y;

                } else if (x.parent.right == x) {
                    x.parent.right = y;
                }
            }
            //3。X作为Y的左孩子
            y.left = x;
            x.parent = y;
        }
    }

    public void right_rotate(Node<E> y) {
        if (y != null) {
            Node<E> yl = y.left;

            //step1
            y.left = yl.right;
            if (yl.right != null) {
                yl.right.parent = y;
            }

            // step2
            yl.parent = y.parent;
            if (y.parent == null) {
                root = yl;
            } else {
                if (y.parent.left == y) {
                    y.parent.left = yl;
                } else if (y.parent.right == y) {
                    y.parent.right = yl;
                }
            }
            // step3
            yl.right = y;
            y.parent = yl;
        }
    }

    public void rightBalance(Node<E> t) {
        Node<E> tr = t.right;
        switch (tr.balance) {
            case RH://新的结点插入到t的右孩子的右子树中
                left_rotate(t);
                t.balance = EH;
                tr.balance = EH;
                break;
            case LH://新的结点插入到t的右孩子的左子树中
                Node<E> trl = tr.left;
                switch (trl.balance) {
                    case RH:
                        t.balance = LH;
                        tr.balance = EH;
                        trl.balance = EH;
                        break;
                    case LH:
                        t.balance = EH;
                        tr.balance = RH;
                        trl.balance = EH;
                        break;
                    case EH:
                        tr.balance = EH;
                        trl.balance = EH;
                        t.balance = EH;
                        break;

                }
                right_rotate(t.right);
                left_rotate(t);
                break;

        }
    }

    public void leftBalance(Node<E> t) {
        Node<E> tl = t.left;
        switch (tl.balance) {
            case LH:
                right_rotate(t);
                tl.balance = EH;
                t.balance = EH;
                break;
            case RH:
                Node<E> tlr = tl.right;
                switch (tlr.balance) {
                    case LH:
                        t.balance = RH;
                        tl.balance = EH;
                        tlr.balance = EH;
                        break;
                    case RH:
                        t.balance = EH;
                        tl.balance = LH;
                        tlr.balance = EH;
                        break;
                    case EH:
                        t.balance = EH;
                        tl.balance = EH;
                        tlr.balance = EH;
                        break;

                    default:
                        break;
                }
                left_rotate(t.left);
                right_rotate(t);
                break;


        }
    }

    public boolean insertElement(E element) {
        Node<E> t = root;
        if (t == null) {
            root = new Node<E>(element, null);
            size = 1;
            root.balance = 0;
            return true;
        } else {
            //开始找到要插入的位置
            int cmp = 0;
            Node<E> parent;
            Comparable<? super E> e = (Comparable<? super E>) element;
            do {
                parent = t;
                cmp = e.compareTo(t.elemet);
                if (cmp < 0) {
                    t = t.left;
                } else if (cmp > 0) {
                    t = t.right;
                } else {
                    return false;
                }
            } while (t != null);
            //开始插入数据
            Node<E> child = new Node<E>(element, parent);
            if (cmp < 0) {
                parent.left = child;
            } else {
                parent.right = child;
            }
            //节点已经放到了树上
            //检查平衡,回溯查找
            while (parent != null) {
                cmp = e.compareTo(parent.elemet);
                if (cmp < 0) {
                    parent.balance++;
                } else {
                    parent.balance--;
                }
                if (parent.balance == 0) {//如果插入后还是平衡树,不用调整
                    break;
                }
                if (Math.abs(parent.balance) == 2) {
                    //出现了平衡的问题,需要修正
                    fixAfterInsertion(parent);
                    break;
                } else {
                    parent = parent.parent;
                }
            }
        }
        size++;
        return true;
    }

    @Test
    public void test() {
        Integer[] nums = {5, 8, 2, 0, 1, -2};
        _6AVLBTree<Integer> tree = new _6AVLBTree<>();
        for (int i = 0; i < nums.length; i++) {
            tree.insertElement(nums[i]);
        }
        showAVL((Node) tree.root);
    }

    public void showAVL(Node root) {
        LinkedList<Node> list = new LinkedList<Node>();
        list.offer(root);//队列放入
        while (!list.isEmpty()) {
            Node node = list.pop();//队列的取出
            System.out.println(node.elemet);
            if (node.left != null) {
                list.offer(node.left);
            }
            if (node.right != null) {
                list.offer(node.right);
            }
        }
    }

    private void fixAfterInsertion(Node<E> parent) {
        if (parent.balance == 2) {
            leftBalance(parent);
        }
        if (parent.balance == -2) {
            rightBalance(parent);
        }
    }


    public class Node<E extends Comparable<E>> {
        E elemet;
        int balance = 0;//平衡因子
        Node<E> left;
        Node<E> right;
        Node<E> parent;

        public Node(E elem, Node<E> pare) {
            this.elemet = elem;
            this.parent = pare;
        }

        public E getElemet() {
            return elemet;
        }

        public void setElemet(E elemet) {
            this.elemet = elemet;
        }

        public int getBalance() {
            return balance;
        }

        public void setBalance(int balance) {
            this.balance = balance;
        }

        public Node<E> getLeft() {
            return left;
        }

        public void setLeft(Node<E> left) {
            this.left = left;
        }

        public Node<E> getRight() {
            return right;
        }

        public void setRight(Node<E> right) {
            this.right = right;
        }

        public Node<E> getParent() {
            return parent;
        }

        public void setParent(Node<E> parent) {
            this.parent = parent;
        }
    }
}

红黑树

定义:它或者是一颗空树,或者是一颗具有如下定义的树:

  1. 节点非红即黑
  2. 根节点是黑色
  3. 所有null节点称为叶子节点,且颜色为黑色
  4. 所有红节点子节点都是黑色
  5. 从任一节点到其叶子节点的所有路径上都包含相同数目的黑节点

它是对平衡二叉树的改良:为了降低插入和删除操作的复杂程度,规定任意一个节点左右子树高度差不会超过一倍。

你可能感兴趣的:(算法数据结构,二叉树,数据结构,树结构,算法)