机器学习--pytorch(1)

接触这个东西之前,什么都不懂。很绝望,而且寒假回家没敲过代码,感觉啥都忘了。

用了三天时间断断续续学习pytorch,做完了实验。哈哈哈哈我是最棒的。

基础教程

b站莫烦python:莫烦-pytorch

知乎:深度炼丹-pytorch

下面学习的代码来自知乎的教程

代码示例1

import torch
import numpy as np 
from torch.autograd import Variable
a = torch.Tensor(5, 4)
# print (a)
# tensor([[1.3634e+10, 4.5915e-41, 0.0000e+00, 0.0000e+00],
#         [1.1785e-42, 0.0000e+00, 1.3092e+01, 8.3658e-43],
#         [1.7265e+10, 4.5915e-41, 1.7265e+10, 4.5915e-41],
#         [1.3092e+01, 8.3658e-43, 1.7265e+10, 4.5915e-41],
#         [0.0000e+00, 0.0000e+00, 4.3440e-44, 0.0000e+00]])

b = torch.rand(5,4)
# print(b)
# tensor([[0.2416, 0.9073, 0.3216, 0.4597],
#         [0.6102, 0.7182, 0.2020, 0.2389],
#         [0.2832, 0.3412, 0.1779, 0.5283],
#         [0.2052, 0.5030, 0.2734, 0.1610],
#         [0.8396, 0.0220, 0.4063, 0.7871]])
print (b.size())
c = np.ones((5,4))
print (c)
#pytorch.tensor转化为numpy
d = b.numpy()
print(d)
#numpy转化为pytorch.tensor
e = np.array([[3,4], [3, 6]])
f = torch.from_numpy(e)
print(f)

print(torch.cuda.is_available())
#是否对其求梯度,默认是False
x = Variable(torch.Tensor([3]), requires_grad=True)
y = Variable(torch.Tensor([5]), requires_grad=True)
z = 2 * x + y + 4
#对x和y分别求导
z.backward()
#输出x的导数和y的导数
print('dz/dx: {}'.format(x.grad.data))
print('dz/dy: {}'.format(y.grad.data))
# (pytorch2) C:\Users\lenovo>python E:\1desktop\now\2019春季-安全系统实验\实验3\练习1.py
# torch.Size([5, 4])
# [[ 1.  1.  1.  1.]
#  [ 1.  1.  1.  1.]
#  [ 1.  1.  1.  1.]
#  [ 1.  1.  1.  1.]
#  [ 1.  1.  1.  1.]]
# [[ 0.51665479  0.12178713  0.29267973  0.86160815]
#  [ 0.44409192  0.03003657  0.43051815  0.76561362]
#  [ 0.56820017  0.67228419  0.69501537  0.99156016]
#  [ 0.58648318  0.63945204  0.79995954  0.95069563]
#  [ 0.8768664   0.05610359  0.17375535  0.31167436]]
# tensor([[3, 4],
#         [3, 6]], dtype=torch.int32)
# False
# dz/dx: tensor([2.])
# dz/dy: tensor([1.])

代码实例2---线性回归

import torch
from torch import nn, optim
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt

x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168],
                    [9.779], [6.182], [7.59], [2.167], [7.042],
                    [10.791], [5.313], [7.997], [3.1]], dtype=np.float32)

y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573],
                    [3.366], [2.596], [2.53], [1.221], [2.827],
                    [3.465], [1.65], [2.904], [1.3]], dtype=np.float32)

# numpy转化为tensor
x_train = torch.from_numpy(x_train)

y_train = torch.from_numpy(y_train)


# Linear Regression Model
class LinearRegression(nn.Module):
    def __init__(self):
        super(LinearRegression, self).__init__()
        self.linear = nn.Linear(1, 1)  # input and output is 1 dimension 1维
# nn.Linear表示的是 y=w*x+b,里面的两个参数都是1,表示的是x是1维,y也是1维。
# 当然这里是可以根据你想要的输入输出维度来更改的,之前使用的别的框架的同学应该很熟悉。
    def forward(self, x):
        out = self.linear(x)
        return out


model = LinearRegression()
# 定义loss和优化函数
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=1e-4)

# 开始训练
num_epochs = 1000
for epoch in range(num_epochs):
    inputs = Variable(x_train)
    target = Variable(y_train)

    # forward
    out = model(inputs)
    loss = criterion(out, target)
    # backward
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if (epoch+1) % 20 == 0:
        print('Epoch[{}/{}], loss: {:.6f}'
              .format(epoch+1, num_epochs, loss.item()))
#测试模型
model.eval()
predict = model(Variable(x_train))
predict = predict.data.numpy()
plt.plot(x_train.numpy(), y_train.numpy(), 'ro', label='Original data')
plt.plot(x_train.numpy(), predict, label='Fitting Line')
# 显示图例
plt.legend() 
plt.show()

# 保存模型
torch.save(model.state_dict(), './linear.pth')

机器学习--pytorch(1)_第1张图片

代码实例3---逻辑回归_MNIST手写集训练

太麻烦了就不一个一个贴运行结果了,反正是能跑的。


import torch
from torch import nn, optim
import torch.nn.functional as F
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import time
# 定义超参数
batch_size = 32
learning_rate = 1e-3
num_epoches = 100

# 下载训练集 MNIST 手写数字训练集
train_dataset = datasets.MNIST(
    root='./data', train=True, transform=transforms.ToTensor(), download=True)

test_dataset = datasets.MNIST(
    root='./data', train=False, transform=transforms.ToTensor())

train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)


# 定义 Logistic Regression 模型
class Logstic_Regression(nn.Module):
    def __init__(self, in_dim, n_class):
        super(Logstic_Regression, self).__init__()
        self.logstic = nn.Linear(in_dim, n_class)

    def forward(self, x):
        out = self.logstic(x)#
        return out


model = Logstic_Regression(28 * 28, 10)  # 图片大小是28x28
use_gpu = torch.cuda.is_available()  # 判断是否有GPU加速
if use_gpu:
    model = model.cuda()
# 定义loss和optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)

# 开始训练  100次
for epoch in range(num_epoches):
    print('*' * 10)#分隔
    print('epoch {}'.format(epoch + 1))
    since = time.time()
    running_loss = 0.0
    running_acc = 0.0
    for i, data in enumerate(train_loader, 1):
        img, label = data
        # if i==1:
        #     print(i)
        #     print('*' * 10)
        #     print(img.shape)
        #     print('*' * 10)


        # img = img.view(img.size(0), -1)  # 将图片展开成 28x28
        # if i==2:
        #     print(i)
        #     print('\n')
        #     print(img.shape)
        #     print('\n')
        if use_gpu:
            img = Variable(img).cuda()
            label = Variable(label).cuda()
        else:
            img = Variable(img)
            label = Variable(label)
        # 向前传播
        out = model(img)
        loss = criterion(out, label)
        running_loss += loss.item() * label.size(0)
        _, pred = torch.max(out, 1)
        num_correct = (pred == label).sum()
        running_acc += num_correct.item()
        # 向后传播
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if i % 300 == 0:
            print('[{}/{}] Loss: {:.6f}, Acc: {:.6f}'.format(
                epoch + 1, num_epoches, running_loss / (batch_size * i),
                running_acc / (batch_size * i)))
    print('Finish {} epoch, Loss: {:.6f}, Acc: {:.6f}'.format(
        epoch + 1, running_loss / (len(train_dataset)), running_acc / (len(
            train_dataset))))
    model.eval()
    eval_loss = 0.
    eval_acc = 0.
    for data in test_loader:
        img, label = data
        img = img.view(img.size(0), -1)
        if use_gpu:
            img = Variable(img, volatile=True).cuda()
            label = Variable(label, volatile=True).cuda()
        else:
            img = Variable(img, volatile=True)
            label = Variable(label, volatile=True)
        out = model(img)
        loss = criterion(out, label)
        eval_loss += loss.item() * label.size(0)
        _, pred = torch.max(out, 1)
        num_correct = (pred == label).sum()
        eval_acc += num_correct.item()
    print('Test Loss: {:.6f}, Acc: {:.6f}'.format(eval_loss / (len(
        test_dataset)), eval_acc / (len(test_dataset))))
    print('Time:{:.1f} s'.format(time.time() - since))
    print()

# 保存模型
torch.save(model.state_dict(), './logstic.pth')

 

你可能感兴趣的:(机器学习)