高精度模板(加减乘除)

注意:转入的vector为倒序的,如计算34982,vector应该从后往前存储:28943

高精度加法addition:

便于记忆的图片:

高精度模板(加减乘除)_第1张图片

//高精度加法addition
// C = A + B, A >= 0, B >= 0
V add(V &A, V &B)
{
	//保证A的位数比B的位数多
    if (A.size() < B.size()) return add(B, A);

    V C;
    int t = 0;
    for (int i = 0; i < A.size(); i ++ )
    {
        t += A[i];
        if (i < B.size()) t += B[i];
        C.push_back(t % 10);
        t /= 10;
    }

    if (t) C.push_back(t);
    return C;
}

高精度减法subtraction:

便于记忆的图片:

高精度模板(加减乘除)_第2张图片

//高精度减法subtraction
// C = A - B, 满足A >= B, A >= 0, B >= 0
V sub(V &A, V &B)
{
    V C;
    for (int i = 0, t = 0; i < A.size(); i ++ )
    {
        t = A[i] - t;
        if (i < B.size()) t -= B[i];
        C.push_back((t + 10) % 10);
        if (t < 0) t = 1;
        else t = 0;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

高精度乘法multiplication:

便于记忆的图片:
高精度模板(加减乘除)_第3张图片

//高精度乘法multiplication
// C = A * b, A >= 0, b > 0
V mul(V a, int b)
{
    V C;
    int t = 0;
    for (int i = 0; i < a.size() || t; i ++ )
    {
        if (i < a.size()) t += a[i] * b;
        C.push_back(t % 10);
        t /= 10;
    }
    return C;
}

高精度除法division:

便于记忆的图片:
高精度模板(加减乘除)_第4张图片

//高精度除法division
// A / b = C ... r, A >= 0, b > 0
V div(V a, int b)
{
    vector<int> C;
    int r = 0;
    //从前往后除,存储的顺序是正的
    for (int i = a.size() - 1; i >= 0; i -- )
    {
        r = r * 10 + a[i];
        C.push_back(r / b);
        r %= b;
    }
    //反转后是为了把一开始除的时候存储的 ‘0’放到末尾,便于删除
    reverse(C.begin(), C.end());
    //除去末尾 ‘0’,此时结果为倒序
    while (C.size() > 1 && C.back() == 0) C.pop_back();
    //倒序输出
    return C;
}

高精度比较大小:

//高精度比较
bool cmp(V a, V b)
{
    //若两个数字长度不同,a小,则返回true
    if(a.size() != b.size()) return a.size() < b.size();
    //若长度相同,反转一下,直接比较,vector自动比较
    reverse(a.begin(), a.end());
    reverse(b.begin(), b.end());
    //vector 按照字典序比较
    return a < b;
}

高精度倒序输出:

//高精度倒序输出
void out(V res)
{
    for(int i = res.size() - 1; i >= 0; i--) cout<<res[i];
    cout<<endl;
}

完整版:

#include 
#include 
#include 
#include 
#include 
#include 
#include 

using namespace std;
typedef vector<int> V;

//高精度加法addition
// C = A + B, A >= 0, B >= 0
V add(V &A, V &B)
{
    if (A.size() < B.size()) return add(B, A);

    V C;
    int t = 0;
    for (int i = 0; i < A.size(); i ++ )
    {
        t += A[i];
        if (i < B.size()) t += B[i];
        C.push_back(t % 10);
        t /= 10;
    }

    if (t) C.push_back(t);
    return C;
}

//高精度减法subtraction
// C = A - B, 满足A >= B, A >= 0, B >= 0
V sub(V &A, V &B)
{
    V C;
    for (int i = 0, t = 0; i < A.size(); i ++ )
    {
        t = A[i] - t;
        if (i < B.size()) t -= B[i];
        C.push_back((t + 10) % 10);
        if (t < 0) t = 1;
        else t = 0;
    }

    while (C.size() > 1 && C.back() == 0) C.pop_back();
    return C;
}

//高精度乘法multiplication
// C = A * b, A >= 0, b > 0
V mul(V a, int b)
{
    V C;
    int t = 0;
    for (int i = 0; i < a.size() || t; i ++ )
    {
        if (i < a.size()) t += a[i] * b;
        C.push_back(t % 10);
        t /= 10;
    }
    return C;
}
//高精度除法division
// A / b = C ... r, A >= 0, b > 0
V div(V a, int b)
{
    vector<int> C;
    int r = 0;
    //从前往后除,存储的顺序是正的
    for (int i = a.size() - 1; i >= 0; i -- )
    {
        r = r * 10 + a[i];
        C.push_back(r / b);
        r %= b;
    }
    //反转后是为了把一开始除的时候存储的 ‘0’放到末尾,便于删除
    reverse(C.begin(), C.end());
    //除去末尾 ‘0’,此时结果为倒序
    while (C.size() > 1 && C.back() == 0) C.pop_back();
    //倒序输出
    return C;
}
//高精度比较
bool cmp(V a, V b)
{
    //若两个数字长度不同,a小,则返回true
    if(a.size() != b.size()) return a.size() < b.size();
    //若长度相同,反转一下,直接比较,vector自动比较
    reverse(a.begin(), a.end());
    reverse(b.begin(), b.end());
    //vector 按照字典序比较
    return a < b;
}

//高精度倒序输出
void out(V res)
{
    for(int i = res.size() - 1; i >= 0; i--) cout<<res[i];
    cout<<endl;
}

int main()
{
	
    return 0;
}

你可能感兴趣的:(模板)