【codevs 1041】【vijos P1119】[NOIP提高组2001] Car的旅行路线(最短路)

P1119Car的旅行路线
Accepted
标签: NOIP提高组2001 [显示标签]

描述

又到暑假了,住在城市A的Car想和朋友一起去城市B旅游。她知道每个城市都有四个飞机场,分别位于一个矩形的四个顶点上,同一个城市中两个机场之间有一条笔直的高速铁路,第I个城市中高速铁路了的单位里程价格为Ti,任意两个不同城市的机场之间均有航线,所有航线单位里程的价格均为t。

那么Car应如何安排到城市B的路线才能尽可能的节省花费呢?她发现这并不是一个简单的问题,于是她来向你请教。找出一条从城市A到B的旅游路线,出发和到达城市中的机场可以任意选取,要求总的花费最少。

格式

输入格式

第一行有四个正整数s,t,A,B。S(0

接下来有S行,其中第I行均有7个正整数xi1,yi1,xi2,yi2,xi3,yi3,Ti,这当中的(xi1,yi1),(xi2,yi2),(xi3,yi3)分别是第I个城市中任意三个机场的坐标,T I为第I个城市高速铁路单位里程的价格。

输出格式

输出最小费用(结果保留两位小数)

样例1

样例输入1[复制]

3 10 1 3
1 1 1 3 3 1 30
2 5 7 4 5 2 1
8 6 8 8 11 6 3

样例输出1[复制]

47.55

限制

每个测试点1s

来源

NOIP2001第四题

【题解】【堆优化dijkstra】

【难点在于建图,给出的三个点中,距离最长的两个点是对角线,然后用中点公式求出第四个点,每个点向其它点连边】

#include
#include
#include
#include
#include
#define inf 1e9
using namespace std;
struct node{
	int x,y;
	int opt;
}d[810];
struct size{
	int num;
	double val;
	bool operator<(const size &x)const
	{
		return x.valque;
int T,n,sn,tn,cnt;
int a[160010],nxt[160010],p[810],tot;
double w,val[410],c[160010],dis[160010];
bool vis[160010];
inline node find(node a,node b,node c,int nm)
{
	node v;
	v.x=a.x+b.x-c.x;
	v.y=a.y+b.y-c.y;
	v.opt=nm;
	return v;
}
inline void add(int x,int y,double v)
{
	tot++; a[tot]=y; nxt[tot]=p[x]; p[x]=tot; c[tot]=v;
	tot++; a[tot]=x; nxt[tot]=p[y]; p[y]=tot; c[tot]=v;
}
inline void dijkstra()
{
	memset(dis,127,sizeof(dis));
	memset(vis,0,sizeof(vis));
	for(int i=1;i<=4;++i)
	 {
	 	size x;
	 	x.num=(sn-1)*4+i;
	 	x.val=0; dis[x.num]=0;
	 	que.push(x);
	 }
	while(!que.empty())
	 {
	    size u=que.top(); que.pop();
	    int v=u.num; 
	    if(vis[v]) continue;
	    vis[v]=1;
	    for(int i=p[v];i!=-1;i=nxt[i])
	     if(!vis[a[i]]&&dis[a[i]]>dis[v]+c[i])
	      {
	      	dis[a[i]]=dis[v]+c[i];
	      	size x; x.num=a[i]; x.val=dis[a[i]];
	      	que.push(x);
		  }
	 }
}
int main()
{
	int i,j,k;
    memset(nxt,-1,sizeof(nxt));
	memset(p,-1,sizeof(p));
	tot=0; double ans=inf;
	scanf("%d%lf%d%d",&n,&w,&sn,&tn);
	if(sn==tn) {printf("0.00\n"); return 0; }
	for(i=1;i<=n;++i)
	 {
	 	node a,b,c;
	 	scanf("%d%d%d%d%d%d%lf",&a.x,&a.y,&b.x,&b.y,&c.x,&c.y,&val[i]);
	 	int l1,l2,l3,maxn,nm=1; a.opt=b.opt=c.opt=i;
	 	d[++cnt]=a; d[++cnt]=c; d[++cnt]=b;
	    l1=(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y);
	    l2=(a.x-c.x)*(a.x-c.x)+(a.y-c.y)*(a.y-c.y);
	    l3=(b.x-c.x)*(b.x-c.x)+(b.y-c.y)*(b.y-c.y);
	    maxn=l1;
	    if(maxn


你可能感兴趣的:(noip,图,最短路,图,最短路)