之前是在PPT中记录了学习的过程,以下是生成的图片
图片均是按4K分辨率保存,网页显示不清晰,点击图片即可显示大图
只推导了6轴的姿态融合,源码里还包含了磁力计的融合用来修yaw的漂移,文中有提到。
源代码:
//=====================================================================================================
// MahonyAHRS.c
//=====================================================================================================
//
// Madgwick's implementation of Mayhony's AHRS algorithm.
// See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
//
// Date Author Notes
// 29/09/2011 SOH Madgwick Initial release
// 02/10/2011 SOH Madgwick Optimised for reduced CPU load
//
//=====================================================================================================
//---------------------------------------------------------------------------------------------------
// Header files
#include "MahonyAHRS.h"
#include
//---------------------------------------------------------------------------------------------------
// Definitions
#define sampleFreq 1000.0f // sample frequency in Hz
#define twoKpDef (2.0f * 5.0f) // 2 * proportional gain
#define twoKiDef (2.0f * 0.0f) // 2 * integral gain
//---------------------------------------------------------------------------------------------------
// Variable definitions
volatile float twoKp = twoKpDef; // 2 * proportional gain (Kp)
volatile float twoKi = twoKiDef; // 2 * integral gain (Ki)
volatile float q0 = 1.0f, q1 = 0.0f, q2 = 0.0f, q3 = 0.0f; // quaternion of sensor frame relative to auxiliary frame
volatile float integralFBx = 0.0f, integralFBy = 0.0f, integralFBz = 0.0f; // integral error terms scaled by Ki
//---------------------------------------------------------------------------------------------------
// Function declarations
float invSqrt(float x);
//====================================================================================================
// Functions
//---------------------------------------------------------------------------------------------------
// AHRS algorithm update
void MahonyAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) {
float recipNorm;
float q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3;
float hx, hy, bx, bz;
float halfvx, halfvy, halfvz, halfwx, halfwy, halfwz;
float halfex, halfey, halfez;
float qa, qb, qc;
// Use IMU algorithm if magnetometer measurement invalid (avoids NaN in magnetometer normalisation)
if((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) {
MahonyAHRSupdateIMU(gx, gy, gz, ax, ay, az);
return;
}
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Normalise magnetometer measurement
recipNorm = invSqrt(mx * mx + my * my + mz * mz);
mx *= recipNorm;
my *= recipNorm;
mz *= recipNorm;
// Auxiliary variables to avoid repeated arithmetic
q0q0 = q0 * q0;
q0q1 = q0 * q1;
q0q2 = q0 * q2;
q0q3 = q0 * q3;
q1q1 = q1 * q1;
q1q2 = q1 * q2;
q1q3 = q1 * q3;
q2q2 = q2 * q2;
q2q3 = q2 * q3;
q3q3 = q3 * q3;
// Reference direction of Earth's magnetic field
hx = 2.0f * (mx * (0.5f - q2q2 - q3q3) + my * (q1q2 - q0q3) + mz * (q1q3 + q0q2));
hy = 2.0f * (mx * (q1q2 + q0q3) + my * (0.5f - q1q1 - q3q3) + mz * (q2q3 - q0q1));
bx = sqrt(hx * hx + hy * hy);
bz = 2.0f * (mx * (q1q3 - q0q2) + my * (q2q3 + q0q1) + mz * (0.5f - q1q1 - q2q2));
// Estimated direction of gravity and magnetic field
halfvx = q1q3 - q0q2;
halfvy = q0q1 + q2q3;
halfvz = q0q0 - 0.5f + q3q3;
halfwx = bx * (0.5f - q2q2 - q3q3) + bz * (q1q3 - q0q2);
halfwy = bx * (q1q2 - q0q3) + bz * (q0q1 + q2q3);
halfwz = bx * (q0q2 + q1q3) + bz * (0.5f - q1q1 - q2q2);
// Error is sum of cross product between estimated direction and measured direction of field vectors
halfex = (ay * halfvz - az * halfvy) + (my * halfwz - mz * halfwy);
halfey = (az * halfvx - ax * halfvz) + (mz * halfwx - mx * halfwz);
halfez = (ax * halfvy - ay * halfvx) + (mx * halfwy - my * halfwx);
// Compute and apply integral feedback if enabled
if(twoKi > 0.0f) {
integralFBx += twoKi * halfex * (1.0f / sampleFreq); // integral error scaled by Ki
integralFBy += twoKi * halfey * (1.0f / sampleFreq);
integralFBz += twoKi * halfez * (1.0f / sampleFreq);
gx += integralFBx; // apply integral feedback
gy += integralFBy;
gz += integralFBz;
}
else {
integralFBx = 0.0f; // prevent integral windup
integralFBy = 0.0f;
integralFBz = 0.0f;
}
// Apply proportional feedback
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKp * halfez;
}
// Integrate rate of change of quaternion
gx *= (0.5f * (1.0f / sampleFreq)); // pre-multiply common factors
gy *= (0.5f * (1.0f / sampleFreq));
gz *= (0.5f * (1.0f / sampleFreq));
qa = q0;
qb = q1;
qc = q2;
q0 += (-qb * gx - qc * gy - q3 * gz);
q1 += (qa * gx + qc * gz - q3 * gy);
q2 += (qa * gy - qb * gz + q3 * gx);
q3 += (qa * gz + qb * gy - qc * gx);
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
//---------------------------------------------------------------------------------------------------
// IMU algorithm update
void MahonyAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az) {
float recipNorm;
float halfvx, halfvy, halfvz;
float halfex, halfey, halfez;
float qa, qb, qc;
// Compute feedback only if accelerometer measurement valid (avoids NaN in accelerometer normalisation)
if(!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) {
// Normalise accelerometer measurement
recipNorm = invSqrt(ax * ax + ay * ay + az * az);
ax *= recipNorm;
ay *= recipNorm;
az *= recipNorm;
// Estimated direction of gravity and vector perpendicular to magnetic flux
halfvx = q1 * q3 - q0 * q2;
halfvy = q0 * q1 + q2 * q3;
halfvz = q0 * q0 - 0.5f + q3 * q3;
// Error is sum of cross product between estimated and measured direction of gravity
halfex = (ay * halfvz - az * halfvy);
halfey = (az * halfvx - ax * halfvz);
halfez = (ax * halfvy - ay * halfvx);
// Compute and apply integral feedback if enabled
if(twoKi > 0.0f) {
integralFBx += twoKi * halfex * (1.0f / sampleFreq); // integral error scaled by Ki
integralFBy += twoKi * halfey * (1.0f / sampleFreq);
integralFBz += twoKi * halfez * (1.0f / sampleFreq);
gx += integralFBx; // apply integral feedback
gy += integralFBy;
gz += integralFBz;
}
else {
integralFBx = 0.0f; // prevent integral windup
integralFBy = 0.0f;
integralFBz = 0.0f;
}
// Apply proportional feedback
gx += twoKp * halfex;
gy += twoKp * halfey;
gz += twoKp * halfez;
}
// Integrate rate of change of quaternion
gx *= (0.5f * (1.0f / sampleFreq)); // pre-multiply common factors
gy *= (0.5f * (1.0f / sampleFreq));
gz *= (0.5f * (1.0f / sampleFreq));
qa = q0;
qb = q1;
qc = q2;
q0 += (-qb * gx - qc * gy - q3 * gz);
q1 += (qa * gx + qc * gz - q3 * gy);
q2 += (qa * gy - qb * gz + q3 * gx);
q3 += (qa * gz + qb * gy - qc * gx);
// Normalise quaternion
recipNorm = invSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
q0 *= recipNorm;
q1 *= recipNorm;
q2 *= recipNorm;
q3 *= recipNorm;
}
//---------------------------------------------------------------------------------------------------
// Fast inverse square-root
// See: http://en.wikipedia.org/wiki/Fast_inverse_square_root
float invSqrt(float x) {
float halfx = 0.5f * x;
float y = x;
long i = *(long*)&y;
i = 0x5f3759df - (i>>1);
y = *(float*)&i;
y = y * (1.5f - (halfx * y * y));
return y;
}
//====================================================================================================
// END OF CODE
//====================================================================================================
头文件:
//=====================================================================================================
// MahonyAHRS.h
//=====================================================================================================
//
// Madgwick's implementation of Mayhony's AHRS algorithm.
// See: http://www.x-io.co.uk/node/8#open_source_ahrs_and_imu_algorithms
//
// Date Author Notes
// 29/09/2011 SOH Madgwick Initial release
// 02/10/2011 SOH Madgwick Optimised for reduced CPU load
//
//=====================================================================================================
#ifndef MahonyAHRS_h
#define MahonyAHRS_h
//----------------------------------------------------------------------------------------------------
// Variable declaration
extern volatile float twoKp; // 2 * proportional gain (Kp)
extern volatile float twoKi; // 2 * integral gain (Ki)
extern volatile float q0, q1, q2, q3; // quaternion of sensor frame relative to auxiliary frame
//---------------------------------------------------------------------------------------------------
// Function declarations
void MahonyAHRSupdate(float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz);
void MahonyAHRSupdateIMU(float gx, float gy, float gz, float ax, float ay, float az);
#endif
//=====================================================================================================
// End of file
//=====================================================================================================