ADPCM格式音频编解码:https://lists.ffmpeg.org/doxygen/3.2/adpcm_8c_source.html
以下是代码:
1 /*
2 * Copyright (c) 2001-2003 The FFmpeg project
3 *
4 * first version by Francois Revol ([email protected])
5 * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6 * by Mike Melanson ([email protected])
7 * CD-ROM XA ADPCM codec by BERO
8 * EA ADPCM decoder by Robin Kay ([email protected])
9 * EA ADPCM R1/R2/R3 decoder by Peter Ross ([email protected])
10 * EA IMA EACS decoder by Peter Ross ([email protected])
11 * EA IMA SEAD decoder by Peter Ross ([email protected])
12 * EA ADPCM XAS decoder by Peter Ross ([email protected])
13 * MAXIS EA ADPCM decoder by Robert Marston ([email protected])
14 * THP ADPCM decoder by Marco Gerards ([email protected])
15 *
16 * This file is part of FFmpeg.
17 *
18 * FFmpeg is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU Lesser General Public
20 * License as published by the Free Software Foundation; either
21 * version 2.1 of the License, or (at your option) any later version.
22 *
23 * FFmpeg is distributed in the hope that it will be useful,
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
26 * Lesser General Public License for more details.
27 *
28 * You should have received a copy of the GNU Lesser General Public
29 * License along with FFmpeg; if not, write to the Free Software
30 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
31 */
32 #include "avcodec.h"
33 #include "get_bits.h"
34 #include "bytestream.h"
35 #include "adpcm.h"
36 #include "adpcm_data.h"
37 #include "internal.h"
38
39 /**
40 * @file
41 * ADPCM decoders
42 * Features and limitations:
43 *
44 * Reference documents:
45 * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
46 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
47 * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
48 * http://openquicktime.sourceforge.net/
49 * XAnim sources (xa_codec.c) http://xanim.polter.net/
50 * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
51 * SoX source code http://sox.sourceforge.net/
52 *
53 * CD-ROM XA:
54 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
55 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
56 * readstr http://www.geocities.co.jp/Playtown/2004/
57 */
58
59 /* These are for CD-ROM XA ADPCM */
60 static const int xa_adpcm_table[5][2] = {
61 { 0, 0 },
62 { 60, 0 },
63 { 115, -52 },
64 { 98, -55 },
65 { 122, -60 }
66 };
67
68 static const int ea_adpcm_table[] = {
69 0, 240, 460, 392,
70 0, 0, -208, -220,
71 0, 1, 3, 4,
72 7, 8, 10, 11,
73 0, -1, -3, -4
74 };
75
76 // padded to zero where table size is less then 16
77 static const int swf_index_tables[4][16] = {
78 /*2*/ { -1, 2 },
79 /*3*/ { -1, -1, 2, 4 },
80 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
81 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
82 };
83
84 /* end of tables */
85
86 typedef struct ADPCMDecodeContext {
87 ADPCMChannelStatus status[14];
88 int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
89 int has_status;
90 } ADPCMDecodeContext;
91
92 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
93 {
94 ADPCMDecodeContext *c = avctx->priv_data;
95 unsigned int min_channels = 1;
96 unsigned int max_channels = 2;
97
98 switch(avctx->codec->id) {
99 case AV_CODEC_ID_ADPCM_DTK:
100 case AV_CODEC_ID_ADPCM_EA:
101 min_channels = 2;
102 break;
103 case AV_CODEC_ID_ADPCM_AFC:
104 case AV_CODEC_ID_ADPCM_EA_R1:
105 case AV_CODEC_ID_ADPCM_EA_R2:
106 case AV_CODEC_ID_ADPCM_EA_R3:
107 case AV_CODEC_ID_ADPCM_EA_XAS:
108 max_channels = 6;
109 break;
110 case AV_CODEC_ID_ADPCM_MTAF:
111 min_channels = 2;
112 max_channels = 8;
113 break;
114 case AV_CODEC_ID_ADPCM_PSX:
115 max_channels = 8;
116 break;
117 case AV_CODEC_ID_ADPCM_IMA_DAT4:
118 case AV_CODEC_ID_ADPCM_THP:
119 case AV_CODEC_ID_ADPCM_THP_LE:
120 max_channels = 14;
121 break;
122 }
123 if (avctx->channels < min_channels || avctx->channels > max_channels) {
124 av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
125 return AVERROR(EINVAL);
126 }
127
128 switch(avctx->codec->id) {
129 case AV_CODEC_ID_ADPCM_CT:
130 c->status[0].step = c->status[1].step = 511;
131 break;
132 case AV_CODEC_ID_ADPCM_IMA_WAV:
133 if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
134 return AVERROR_INVALIDDATA;
135 break;
136 case AV_CODEC_ID_ADPCM_IMA_APC:
137 if (avctx->extradata && avctx->extradata_size >= 8) {
138 c->status[0].predictor = AV_RL32(avctx->extradata);
139 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
140 }
141 break;
142 case AV_CODEC_ID_ADPCM_IMA_WS:
143 if (avctx->extradata && avctx->extradata_size >= 2)
144 c->vqa_version = AV_RL16(avctx->extradata);
145 break;
146 default:
147 break;
148 }
149
150 switch(avctx->codec->id) {
151 case AV_CODEC_ID_ADPCM_AICA:
152 case AV_CODEC_ID_ADPCM_IMA_DAT4:
153 case AV_CODEC_ID_ADPCM_IMA_QT:
154 case AV_CODEC_ID_ADPCM_IMA_WAV:
155 case AV_CODEC_ID_ADPCM_4XM:
156 case AV_CODEC_ID_ADPCM_XA:
157 case AV_CODEC_ID_ADPCM_EA_R1:
158 case AV_CODEC_ID_ADPCM_EA_R2:
159 case AV_CODEC_ID_ADPCM_EA_R3:
160 case AV_CODEC_ID_ADPCM_EA_XAS:
161 case AV_CODEC_ID_ADPCM_THP:
162 case AV_CODEC_ID_ADPCM_THP_LE:
163 case AV_CODEC_ID_ADPCM_AFC:
164 case AV_CODEC_ID_ADPCM_DTK:
165 case AV_CODEC_ID_ADPCM_PSX:
166 case AV_CODEC_ID_ADPCM_MTAF:
167 avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
168 break;
169 case AV_CODEC_ID_ADPCM_IMA_WS:
170 avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
171 AV_SAMPLE_FMT_S16;
172 break;
173 default:
174 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
175 }
176
177 return 0;
178 }
179
180 static inline int16_t adpcm_ima_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
181 {
182 int step_index;
183 int predictor;
184 int sign, delta, diff, step;
185
186 step = ff_adpcm_step_table[c->step_index];
187 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
188 step_index = av_clip(step_index, 0, 88);
189
190 sign = nibble & 8;
191 delta = nibble & 7;
192 /* perform direct multiplication instead of series of jumps proposed by
193 * the reference ADPCM implementation since modern CPUs can do the mults
194 * quickly enough */
195 diff = ((2 * delta + 1) * step) >> shift;
196 predictor = c->predictor;
197 if (sign) predictor -= diff;
198 else predictor += diff;
199
200 c->predictor = av_clip_int16(predictor);
201 c->step_index = step_index;
202
203 return (int16_t)c->predictor;
204 }
205
206 static inline int16_t adpcm_ima_wav_expand_nibble(ADPCMChannelStatus *c, GetBitContext *gb, int bps)
207 {
208 int nibble, step_index, predictor, sign, delta, diff, step, shift;
209
210 shift = bps - 1;
211 nibble = get_bits_le(gb, bps),
212 step = ff_adpcm_step_table[c->step_index];
213 step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble];
214 step_index = av_clip(step_index, 0, 88);
215
216 sign = nibble & (1 << shift);
217 delta = av_mod_uintp2(nibble, shift);
218 diff = ((2 * delta + 1) * step) >> shift;
219 predictor = c->predictor;
220 if (sign) predictor -= diff;
221 else predictor += diff;
222
223 c->predictor = av_clip_int16(predictor);
224 c->step_index = step_index;
225
226 return (int16_t)c->predictor;
227 }
228
229 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
230 {
231 int step_index;
232 int predictor;
233 int diff, step;
234
235 step = ff_adpcm_step_table[c->step_index];
236 step_index = c->step_index + ff_adpcm_index_table[nibble];
237 step_index = av_clip(step_index, 0, 88);
238
239 diff = step >> 3;
240 if (nibble & 4) diff += step;
241 if (nibble & 2) diff += step >> 1;
242 if (nibble & 1) diff += step >> 2;
243
244 if (nibble & 8)
245 predictor = c->predictor - diff;
246 else
247 predictor = c->predictor + diff;
248
249 c->predictor = av_clip_int16(predictor);
250 c->step_index = step_index;
251
252 return c->predictor;
253 }
254
255 static inline int16_t adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
256 {
257 int predictor;
258
259 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
260 predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
261
262 c->sample2 = c->sample1;
263 c->sample1 = av_clip_int16(predictor);
264 c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
265 if (c->idelta < 16) c->idelta = 16;
266 if (c->idelta > INT_MAX/768) {
267 av_log(NULL, AV_LOG_WARNING, "idelta overflow\n");
268 c->idelta = INT_MAX/768;
269 }
270
271 return c->sample1;
272 }
273
274 static inline int16_t adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
275 {
276 int step_index, predictor, sign, delta, diff, step;
277
278 step = ff_adpcm_oki_step_table[c->step_index];
279 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
280 step_index = av_clip(step_index, 0, 48);
281
282 sign = nibble & 8;
283 delta = nibble & 7;
284 diff = ((2 * delta + 1) * step) >> 3;
285 predictor = c->predictor;
286 if (sign) predictor -= diff;
287 else predictor += diff;
288
289 c->predictor = av_clip_intp2(predictor, 11);
290 c->step_index = step_index;
291
292 return c->predictor << 4;
293 }
294
295 static inline int16_t adpcm_ct_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
296 {
297 int sign, delta, diff;
298 int new_step;
299
300 sign = nibble & 8;
301 delta = nibble & 7;
302 /* perform direct multiplication instead of series of jumps proposed by
303 * the reference ADPCM implementation since modern CPUs can do the mults
304 * quickly enough */
305 diff = ((2 * delta + 1) * c->step) >> 3;
306 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
307 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
308 c->predictor = av_clip_int16(c->predictor);
309 /* calculate new step and clamp it to range 511..32767 */
310 new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
311 c->step = av_clip(new_step, 511, 32767);
312
313 return (int16_t)c->predictor;
314 }
315
316 static inline int16_t adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int size, int shift)
317 {
318 int sign, delta, diff;
319
320 sign = nibble & (1<<(size-1));
321 delta = nibble & ((1<<(size-1))-1);
322 diff = delta << (7 + c->step + shift);
323
324 /* clamp result */
325 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
326
327 /* calculate new step */
328 if (delta >= (2*size - 3) && c->step < 3)
329 c->step++;
330 else if (delta == 0 && c->step > 0)
331 c->step--;
332
333 return (int16_t) c->predictor;
334 }
335
336 static inline int16_t adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
337 {
338 if(!c->step) {
339 c->predictor = 0;
340 c->step = 127;
341 }
342
343 c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
344 c->predictor = av_clip_int16(c->predictor);
345 c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
346 c->step = av_clip(c->step, 127, 24567);
347 return c->predictor;
348 }
349
350 static inline int16_t adpcm_mtaf_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
351 {
352 c->predictor += ff_adpcm_mtaf_stepsize[c->step][nibble];
353 c->predictor = av_clip_int16(c->predictor);
354 c->step += ff_adpcm_index_table[nibble];
355 c->step = av_clip_uintp2(c->step, 5);
356 return c->predictor;
357 }
358
359 static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
360 const uint8_t *in, ADPCMChannelStatus *left,
361 ADPCMChannelStatus *right, int channels, int sample_offset)
362 {
363 int i, j;
364 int shift,filter,f0,f1;
365 int s_1,s_2;
366 int d,s,t;
367
368 out0 += sample_offset;
369 if (channels == 1)
370 out1 = out0 + 28;
371 else
372 out1 += sample_offset;
373
374 for(i=0;i<4;i++) {
375 shift = 12 - (in[4+i*2] & 15);
376 filter = in[4+i*2] >> 4;
377 if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
378 avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
379 filter=0;
380 }
381 f0 = xa_adpcm_table[filter][0];
382 f1 = xa_adpcm_table[filter][1];
383
384 s_1 = left->sample1;
385 s_2 = left->sample2;
386
387 for(j=0;j<28;j++) {
388 d = in[16+i+j*4];
389
390 t = sign_extend(d, 4);
391 s = ( t<>6);
392 s_2 = s_1;
393 s_1 = av_clip_int16(s);
394 out0[j] = s_1;
395 }
396
397 if (channels == 2) {
398 left->sample1 = s_1;
399 left->sample2 = s_2;
400 s_1 = right->sample1;
401 s_2 = right->sample2;
402 }
403
404 shift = 12 - (in[5+i*2] & 15);
405 filter = in[5+i*2] >> 4;
406 if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
407 avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
408 filter=0;
409 }
410
411 f0 = xa_adpcm_table[filter][0];
412 f1 = xa_adpcm_table[filter][1];
413
414 for(j=0;j<28;j++) {
415 d = in[16+i+j*4];
416
417 t = sign_extend(d >> 4, 4);
418 s = ( t<>6);
419 s_2 = s_1;
420 s_1 = av_clip_int16(s);
421 out1[j] = s_1;
422 }
423
424 if (channels == 2) {
425 right->sample1 = s_1;
426 right->sample2 = s_2;
427 } else {
428 left->sample1 = s_1;
429 left->sample2 = s_2;
430 }
431
432 out0 += 28 * (3 - channels);
433 out1 += 28 * (3 - channels);
434 }
435
436 return 0;
437 }
438
439 static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
440 {
441 ADPCMDecodeContext *c = avctx->priv_data;
442 GetBitContext gb;
443 const int *table;
444 int k0, signmask, nb_bits, count;
445 int size = buf_size*8;
446 int i;
447
448 init_get_bits(&gb, buf, size);
449
450 //read bits & initial values
451 nb_bits = get_bits(&gb, 2)+2;
452 table = swf_index_tables[nb_bits-2];
453 k0 = 1 << (nb_bits-2);
454 signmask = 1 << (nb_bits-1);
455
456 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
457 for (i = 0; i < avctx->channels; i++) {
458 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
459 c->status[i].step_index = get_bits(&gb, 6);
460 }
461
462 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
463 int i;
464
465 for (i = 0; i < avctx->channels; i++) {
466 // similar to IMA adpcm
467 int delta = get_bits(&gb, nb_bits);
468 int step = ff_adpcm_step_table[c->status[i].step_index];
469 int vpdiff = 0; // vpdiff = (delta+0.5)*step/4
470 int k = k0;
471
472 do {
473 if (delta & k)
474 vpdiff += step;
475 step >>= 1;
476 k >>= 1;
477 } while(k);
478 vpdiff += step;
479
480 if (delta & signmask)
481 c->status[i].predictor -= vpdiff;
482 else
483 c->status[i].predictor += vpdiff;
484
485 c->status[i].step_index += table[delta & (~signmask)];
486
487 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
488 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
489
490 *samples++ = c->status[i].predictor;
491 }
492 }
493 }
494 }
495
496 /**
497 * Get the number of samples that will be decoded from the packet.
498 * In one case, this is actually the maximum number of samples possible to
499 * decode with the given buf_size.
500 *
501 * @param[out] coded_samples set to the number of samples as coded in the
502 * packet, or 0 if the codec does not encode the
503 * number of samples in each frame.
504 * @param[out] approx_nb_samples set to non-zero if the number of samples
505 * returned is an approximation.
506 */
507 static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb,
508 int buf_size, int *coded_samples, int *approx_nb_samples)
509 {
510 ADPCMDecodeContext *s = avctx->priv_data;
511 int nb_samples = 0;
512 int ch = avctx->channels;
513 int has_coded_samples = 0;
514 int header_size;
515
516 *coded_samples = 0;
517 *approx_nb_samples = 0;
518
519 if(ch <= 0)
520 return 0;
521
522 switch (avctx->codec->id) {
523 /* constant, only check buf_size */
524 case AV_CODEC_ID_ADPCM_EA_XAS:
525 if (buf_size < 76 * ch)
526 return 0;
527 nb_samples = 128;
528 break;
529 case AV_CODEC_ID_ADPCM_IMA_QT:
530 if (buf_size < 34 * ch)
531 return 0;
532 nb_samples = 64;
533 break;
534 /* simple 4-bit adpcm */
535 case AV_CODEC_ID_ADPCM_CT:
536 case AV_CODEC_ID_ADPCM_IMA_APC:
537 case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
538 case AV_CODEC_ID_ADPCM_IMA_OKI:
539 case AV_CODEC_ID_ADPCM_IMA_WS:
540 case AV_CODEC_ID_ADPCM_YAMAHA:
541 case AV_CODEC_ID_ADPCM_AICA:
542 nb_samples = buf_size * 2 / ch;
543 break;
544 }
545 if (nb_samples)
546 return nb_samples;
547
548 /* simple 4-bit adpcm, with header */
549 header_size = 0;
550 switch (avctx->codec->id) {
551 case AV_CODEC_ID_ADPCM_4XM:
552 case AV_CODEC_ID_ADPCM_IMA_DAT4:
553 case AV_CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
554 case AV_CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
555 case AV_CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4 * ch; break;
556 }
557 if (header_size > 0)
558 return (buf_size - header_size) * 2 / ch;
559
560 /* more complex formats */
561 switch (avctx->codec->id) {
562 case AV_CODEC_ID_ADPCM_EA:
563 has_coded_samples = 1;
564 *coded_samples = bytestream2_get_le32(gb);
565 *coded_samples -= *coded_samples % 28;
566 nb_samples = (buf_size - 12) / 30 * 28;
567 break;
568 case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
569 has_coded_samples = 1;
570 *coded_samples = bytestream2_get_le32(gb);
571 nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
572 break;
573 case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
574 nb_samples = (buf_size - ch) / ch * 2;
575 break;
576 case AV_CODEC_ID_ADPCM_EA_R1:
577 case AV_CODEC_ID_ADPCM_EA_R2:
578 case AV_CODEC_ID_ADPCM_EA_R3:
579 /* maximum number of samples */
580 /* has internal offsets and a per-frame switch to signal raw 16-bit */
581 has_coded_samples = 1;
582 switch (avctx->codec->id) {
583 case AV_CODEC_ID_ADPCM_EA_R1:
584 header_size = 4 + 9 * ch;
585 *coded_samples = bytestream2_get_le32(gb);
586 break;
587 case AV_CODEC_ID_ADPCM_EA_R2:
588 header_size = 4 + 5 * ch;
589 *coded_samples = bytestream2_get_le32(gb);
590 break;
591 case AV_CODEC_ID_ADPCM_EA_R3:
592 header_size = 4 + 5 * ch;
593 *coded_samples = bytestream2_get_be32(gb);
594 break;
595 }
596 *coded_samples -= *coded_samples % 28;
597 nb_samples = (buf_size - header_size) * 2 / ch;
598 nb_samples -= nb_samples % 28;
599 *approx_nb_samples = 1;
600 break;
601 case AV_CODEC_ID_ADPCM_IMA_DK3:
602 if (avctx->block_align > 0)
603 buf_size = FFMIN(buf_size, avctx->block_align);
604 nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
605 break;
606 case AV_CODEC_ID_ADPCM_IMA_DK4:
607 if (avctx->block_align > 0)
608 buf_size = FFMIN(buf_size, avctx->block_align);
609 if (buf_size < 4 * ch)
610 return AVERROR_INVALIDDATA;
611 nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
612 break;
613 case AV_CODEC_ID_ADPCM_IMA_RAD:
614 if (avctx->block_align > 0)
615 buf_size = FFMIN(buf_size, avctx->block_align);
616 nb_samples = (buf_size - 4 * ch) * 2 / ch;
617 break;
618 case AV_CODEC_ID_ADPCM_IMA_WAV:
619 {
620 int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
621 int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
622 if (avctx->block_align > 0)
623 buf_size = FFMIN(buf_size, avctx->block_align);
624 if (buf_size < 4 * ch)
625 return AVERROR_INVALIDDATA;
626 nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
627 break;
628 }
629 case AV_CODEC_ID_ADPCM_MS:
630 if (avctx->block_align > 0)
631 buf_size = FFMIN(buf_size, avctx->block_align);
632 nb_samples = (buf_size - 6 * ch) * 2 / ch;
633 break;
634 case AV_CODEC_ID_ADPCM_MTAF:
635 if (avctx->block_align > 0)
636 buf_size = FFMIN(buf_size, avctx->block_align);
637 nb_samples = (buf_size - 16 * (ch / 2)) * 2 / ch;
638 break;
639 case AV_CODEC_ID_ADPCM_SBPRO_2:
640 case AV_CODEC_ID_ADPCM_SBPRO_3:
641 case AV_CODEC_ID_ADPCM_SBPRO_4:
642 {
643 int samples_per_byte;
644 switch (avctx->codec->id) {
645 case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
646 case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
647 case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
648 }
649 if (!s->status[0].step_index) {
650 if (buf_size < ch)
651 return AVERROR_INVALIDDATA;
652 nb_samples++;
653 buf_size -= ch;
654 }
655 nb_samples += buf_size * samples_per_byte / ch;
656 break;
657 }
658 case AV_CODEC_ID_ADPCM_SWF:
659 {
660 int buf_bits = buf_size * 8 - 2;
661 int nbits = (bytestream2_get_byte(gb) >> 6) + 2;
662 int block_hdr_size = 22 * ch;
663 int block_size = block_hdr_size + nbits * ch * 4095;
664 int nblocks = buf_bits / block_size;
665 int bits_left = buf_bits - nblocks * block_size;
666 nb_samples = nblocks * 4096;
667 if (bits_left >= block_hdr_size)
668 nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
669 break;
670 }
671 case AV_CODEC_ID_ADPCM_THP:
672 case AV_CODEC_ID_ADPCM_THP_LE:
673 if (avctx->extradata) {
674 nb_samples = buf_size * 14 / (8 * ch);
675 break;
676 }
677 has_coded_samples = 1;
678 bytestream2_skip(gb, 4); // channel size
679 *coded_samples = (avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE) ?
680 bytestream2_get_le32(gb) :
681 bytestream2_get_be32(gb);
682 buf_size -= 8 + 36 * ch;
683 buf_size /= ch;
684 nb_samples = buf_size / 8 * 14;
685 if (buf_size % 8 > 1)
686 nb_samples += (buf_size % 8 - 1) * 2;
687 *approx_nb_samples = 1;
688 break;
689 case AV_CODEC_ID_ADPCM_AFC:
690 nb_samples = buf_size / (9 * ch) * 16;
691 break;
692 case AV_CODEC_ID_ADPCM_XA:
693 nb_samples = (buf_size / 128) * 224 / ch;
694 break;
695 case AV_CODEC_ID_ADPCM_DTK:
696 case AV_CODEC_ID_ADPCM_PSX:
697 nb_samples = buf_size / (16 * ch) * 28;
698 break;
699 }
700
701 /* validate coded sample count */
702 if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
703 return AVERROR_INVALIDDATA;
704
705 return nb_samples;
706 }
707
708 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
709 int *got_frame_ptr, AVPacket *avpkt)
710 {
711 AVFrame *frame = data;
712 const uint8_t *buf = avpkt->data;
713 int buf_size = avpkt->size;
714 ADPCMDecodeContext *c = avctx->priv_data;
715 ADPCMChannelStatus *cs;
716 int n, m, channel, i;
717 int16_t *samples;
718 int16_t **samples_p;
719 int st; /* stereo */
720 int count1, count2;
721 int nb_samples, coded_samples, approx_nb_samples, ret;
722 GetByteContext gb;
723
724 bytestream2_init(&gb, buf, buf_size);
725 nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
726 if (nb_samples <= 0) {
727 av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
728 return AVERROR_INVALIDDATA;
729 }
730
731 /* get output buffer */
732 frame->nb_samples = nb_samples;
733 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
734 return ret;
735 samples = (int16_t *)frame->data[0];
736 samples_p = (int16_t **)frame->extended_data;
737
738 /* use coded_samples when applicable */
739 /* it is always <= nb_samples, so the output buffer will be large enough */
740 if (coded_samples) {
741 if (!approx_nb_samples && coded_samples != nb_samples)
742 av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
743 frame->nb_samples = nb_samples = coded_samples;
744 }
745
746 st = avctx->channels == 2 ? 1 : 0;
747
748 switch(avctx->codec->id) {
749 case AV_CODEC_ID_ADPCM_IMA_QT:
750 /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
751 Channel data is interleaved per-chunk. */
752 for (channel = 0; channel < avctx->channels; channel++) {
753 int predictor;
754 int step_index;
755 cs = &(c->status[channel]);
756 /* (pppppp) (piiiiiii) */
757
758 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
759 predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
760 step_index = predictor & 0x7F;
761 predictor &= ~0x7F;
762
763 if (cs->step_index == step_index) {
764 int diff = predictor - cs->predictor;
765 if (diff < 0)
766 diff = - diff;
767 if (diff > 0x7f)
768 goto update;
769 } else {
770 update:
771 cs->step_index = step_index;
772 cs->predictor = predictor;
773 }
774
775 if (cs->step_index > 88u){
776 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
777 channel, cs->step_index);
778 return AVERROR_INVALIDDATA;
779 }
780
781 samples = samples_p[channel];
782
783 for (m = 0; m < 64; m += 2) {
784 int byte = bytestream2_get_byteu(&gb);
785 samples[m ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
786 samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
787 }
788 }
789 break;
790 case AV_CODEC_ID_ADPCM_IMA_WAV:
791 for(i=0; ichannels; i++){
792 cs = &(c->status[i]);
793 cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
794
795 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
796 if (cs->step_index > 88u){
797 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
798 i, cs->step_index);
799 return AVERROR_INVALIDDATA;
800 }
801 }
802
803 if (avctx->bits_per_coded_sample != 4) {
804 int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
805 int block_size = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
806 uint8_t temp[20 + AV_INPUT_BUFFER_PADDING_SIZE] = { 0 };
807 GetBitContext g;
808
809 for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
810 for (i = 0; i < avctx->channels; i++) {
811 int j;
812
813 cs = &c->status[i];
814 samples = &samples_p[i][1 + n * samples_per_block];
815 for (j = 0; j < block_size; j++) {
816 temp[j] = buf[4 * avctx->channels + block_size * n * avctx->channels +
817 (j % 4) + (j / 4) * (avctx->channels * 4) + i * 4];
818 }
819 ret = init_get_bits8(&g, (const uint8_t *)&temp, block_size);
820 if (ret < 0)
821 return ret;
822 for (m = 0; m < samples_per_block; m++) {
823 samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
824 avctx->bits_per_coded_sample);
825 }
826 }
827 }
828 bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4);
829 } else {
830 for (n = 0; n < (nb_samples - 1) / 8; n++) {
831 for (i = 0; i < avctx->channels; i++) {
832 cs = &c->status[i];
833 samples = &samples_p[i][1 + n * 8];
834 for (m = 0; m < 8; m += 2) {
835 int v = bytestream2_get_byteu(&gb);
836 samples[m ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
837 samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
838 }
839 }
840 }
841 }
842 break;
843 case AV_CODEC_ID_ADPCM_4XM:
844 for (i = 0; i < avctx->channels; i++)
845 c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
846
847 for (i = 0; i < avctx->channels; i++) {
848 c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
849 if (c->status[i].step_index > 88u) {
850 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
851 i, c->status[i].step_index);
852 return AVERROR_INVALIDDATA;
853 }
854 }
855
856 for (i = 0; i < avctx->channels; i++) {
857 samples = (int16_t *)frame->data[i];
858 cs = &c->status[i];
859 for (n = nb_samples >> 1; n > 0; n--) {
860 int v = bytestream2_get_byteu(&gb);
861 *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
862 *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
863 }
864 }
865 break;
866 case AV_CODEC_ID_ADPCM_MS:
867 {
868 int block_predictor;
869
870 block_predictor = bytestream2_get_byteu(&gb);
871 if (block_predictor > 6) {
872 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
873 block_predictor);
874 return AVERROR_INVALIDDATA;
875 }
876 c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
877 c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
878 if (st) {
879 block_predictor = bytestream2_get_byteu(&gb);
880 if (block_predictor > 6) {
881 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
882 block_predictor);
883 return AVERROR_INVALIDDATA;
884 }
885 c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
886 c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
887 }
888 c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
889 if (st){
890 c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
891 }
892
893 c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
894 if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
895 c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
896 if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
897
898 *samples++ = c->status[0].sample2;
899 if (st) *samples++ = c->status[1].sample2;
900 *samples++ = c->status[0].sample1;
901 if (st) *samples++ = c->status[1].sample1;
902 for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
903 int byte = bytestream2_get_byteu(&gb);
904 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
905 *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
906 }
907 break;
908 }
909 case AV_CODEC_ID_ADPCM_MTAF:
910 for (channel = 0; channel < avctx->channels; channel+=2) {
911 bytestream2_skipu(&gb, 4);
912 c->status[channel ].step = bytestream2_get_le16u(&gb) & 0x1f;
913 c->status[channel + 1].step = bytestream2_get_le16u(&gb) & 0x1f;
914 c->status[channel ].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
915 bytestream2_skipu(&gb, 2);
916 c->status[channel + 1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
917 bytestream2_skipu(&gb, 2);
918 for (n = 0; n < nb_samples; n+=2) {
919 int v = bytestream2_get_byteu(&gb);
920 samples_p[channel][n ] = adpcm_mtaf_expand_nibble(&c->status[channel], v & 0x0F);
921 samples_p[channel][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel], v >> 4 );
922 }
923 for (n = 0; n < nb_samples; n+=2) {
924 int v = bytestream2_get_byteu(&gb);
925 samples_p[channel + 1][n ] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v & 0x0F);
926 samples_p[channel + 1][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v >> 4 );
927 }
928 }
929 break;
930 case AV_CODEC_ID_ADPCM_IMA_DK4:
931 for (channel = 0; channel < avctx->channels; channel++) {
932 cs = &c->status[channel];
933 cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
934 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
935 if (cs->step_index > 88u){
936 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
937 channel, cs->step_index);
938 return AVERROR_INVALIDDATA;
939 }
940 }
941 for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
942 int v = bytestream2_get_byteu(&gb);
943 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
944 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
945 }
946 break;
947 case AV_CODEC_ID_ADPCM_IMA_DK3:
948 {
949 int last_byte = 0;
950 int nibble;
951 int decode_top_nibble_next = 0;
952 int diff_channel;
953 const int16_t *samples_end = samples + avctx->channels * nb_samples;
954
955 bytestream2_skipu(&gb, 10);
956 c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
957 c->status[1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
958 c->status[0].step_index = bytestream2_get_byteu(&gb);
959 c->status[1].step_index = bytestream2_get_byteu(&gb);
960 if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
961 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
962 c->status[0].step_index, c->status[1].step_index);
963 return AVERROR_INVALIDDATA;
964 }
965 /* sign extend the predictors */
966 diff_channel = c->status[1].predictor;
967
968 /* DK3 ADPCM support macro */
969 #define DK3_GET_NEXT_NIBBLE() \
970 if (decode_top_nibble_next) { \
971 nibble = last_byte >> 4; \
972 decode_top_nibble_next = 0; \
973 } else { \
974 last_byte = bytestream2_get_byteu(&gb); \
975 nibble = last_byte & 0x0F; \
976 decode_top_nibble_next = 1; \
977 }
978
979 while (samples < samples_end) {
980
981 /* for this algorithm, c->status[0] is the sum channel and
982 * c->status[1] is the diff channel */
983
984 /* process the first predictor of the sum channel */
985 DK3_GET_NEXT_NIBBLE();
986 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
987
988 /* process the diff channel predictor */
989 DK3_GET_NEXT_NIBBLE();
990 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
991
992 /* process the first pair of stereo PCM samples */
993 diff_channel = (diff_channel + c->status[1].predictor) / 2;
994 *samples++ = c->status[0].predictor + c->status[1].predictor;
995 *samples++ = c->status[0].predictor - c->status[1].predictor;
996
997 /* process the second predictor of the sum channel */
998 DK3_GET_NEXT_NIBBLE();
999 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1000
1001 /* process the second pair of stereo PCM samples */
1002 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1003 *samples++ = c->status[0].predictor + c->status[1].predictor;
1004 *samples++ = c->status[0].predictor - c->status[1].predictor;
1005 }
1006
1007 if ((bytestream2_tell(&gb) & 1))
1008 bytestream2_skip(&gb, 1);
1009 break;
1010 }
1011 case AV_CODEC_ID_ADPCM_IMA_ISS:
1012 for (channel = 0; channel < avctx->channels; channel++) {
1013 cs = &c->status[channel];
1014 cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1015 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1016 if (cs->step_index > 88u){
1017 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1018 channel, cs->step_index);
1019 return AVERROR_INVALIDDATA;
1020 }
1021 }
1022
1023 for (n = nb_samples >> (1 - st); n > 0; n--) {
1024 int v1, v2;
1025 int v = bytestream2_get_byteu(&gb);
1026 /* nibbles are swapped for mono */
1027 if (st) {
1028 v1 = v >> 4;
1029 v2 = v & 0x0F;
1030 } else {
1031 v2 = v >> 4;
1032 v1 = v & 0x0F;
1033 }
1034 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
1035 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
1036 }
1037 break;
1038 case AV_CODEC_ID_ADPCM_IMA_DAT4:
1039 for (channel = 0; channel < avctx->channels; channel++) {
1040 cs = &c->status[channel];
1041 samples = samples_p[channel];
1042 bytestream2_skip(&gb, 4);
1043 for (n = 0; n < nb_samples; n += 2) {
1044 int v = bytestream2_get_byteu(&gb);
1045 *samples++ = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
1046 *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
1047 }
1048 }
1049 break;
1050 case AV_CODEC_ID_ADPCM_IMA_APC:
1051 while (bytestream2_get_bytes_left(&gb) > 0) {
1052 int v = bytestream2_get_byteu(&gb);
1053 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
1054 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
1055 }
1056 break;
1057 case AV_CODEC_ID_ADPCM_IMA_OKI:
1058 while (bytestream2_get_bytes_left(&gb) > 0) {
1059 int v = bytestream2_get_byteu(&gb);
1060 *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0], v >> 4 );
1061 *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
1062 }
1063 break;
1064 case AV_CODEC_ID_ADPCM_IMA_RAD:
1065 for (channel = 0; channel < avctx->channels; channel++) {
1066 cs = &c->status[channel];
1067 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1068 cs->predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1069 if (cs->step_index > 88u){
1070 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1071 channel, cs->step_index);
1072 return AVERROR_INVALIDDATA;
1073 }
1074 }
1075 for (n = 0; n < nb_samples / 2; n++) {
1076 int byte[2];
1077
1078 byte[0] = bytestream2_get_byteu(&gb);
1079 if (st)
1080 byte[1] = bytestream2_get_byteu(&gb);
1081 for(channel = 0; channel < avctx->channels; channel++) {
1082 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
1083 }
1084 for(channel = 0; channel < avctx->channels; channel++) {
1085 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4 , 3);
1086 }
1087 }
1088 break;
1089 case AV_CODEC_ID_ADPCM_IMA_WS:
1090 if (c->vqa_version == 3) {
1091 for (channel = 0; channel < avctx->channels; channel++) {
1092 int16_t *smp = samples_p[channel];
1093
1094 for (n = nb_samples / 2; n > 0; n--) {
1095 int v = bytestream2_get_byteu(&gb);
1096 *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1097 *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1098 }
1099 }
1100 } else {
1101 for (n = nb_samples / 2; n > 0; n--) {
1102 for (channel = 0; channel < avctx->channels; channel++) {
1103 int v = bytestream2_get_byteu(&gb);
1104 *samples++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
1105 samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1106 }
1107 samples += avctx->channels;
1108 }
1109 }
1110 bytestream2_seek(&gb, 0, SEEK_END);
1111 break;
1112 case AV_CODEC_ID_ADPCM_XA:
1113 {
1114 int16_t *out0 = samples_p[0];
1115 int16_t *out1 = samples_p[1];
1116 int samples_per_block = 28 * (3 - avctx->channels) * 4;
1117 int sample_offset = 0;
1118 while (bytestream2_get_bytes_left(&gb) >= 128) {
1119 if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
1120 &c->status[0], &c->status[1],
1121 avctx->channels, sample_offset)) < 0)
1122 return ret;
1123 bytestream2_skipu(&gb, 128);
1124 sample_offset += samples_per_block;
1125 }
1126 break;
1127 }
1128 case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
1129 for (i=0; i<=st; i++) {
1130 c->status[i].step_index = bytestream2_get_le32u(&gb);
1131 if (c->status[i].step_index > 88u) {
1132 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1133 i, c->status[i].step_index);
1134 return AVERROR_INVALIDDATA;
1135 }
1136 }
1137 for (i=0; i<=st; i++)
1138 c->status[i].predictor = bytestream2_get_le32u(&gb);
1139
1140 for (n = nb_samples >> (1 - st); n > 0; n--) {
1141 int byte = bytestream2_get_byteu(&gb);
1142 *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 3);
1143 *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
1144 }
1145 break;
1146 case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
1147 for (n = nb_samples >> (1 - st); n > 0; n--) {
1148 int byte = bytestream2_get_byteu(&gb);
1149 *samples++ = adpcm_ima_expand_nibble(&c->status[0], byte >> 4, 6);
1150 *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
1151 }
1152 break;
1153 case AV_CODEC_ID_ADPCM_EA:
1154 {
1155 int previous_left_sample, previous_right_sample;
1156 int current_left_sample, current_right_sample;
1157 int next_left_sample, next_right_sample;
1158 int coeff1l, coeff2l, coeff1r, coeff2r;
1159 int shift_left, shift_right;
1160
1161 /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
1162 each coding 28 stereo samples. */
1163
1164 if(avctx->channels != 2)
1165 return AVERROR_INVALIDDATA;
1166
1167 current_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1168 previous_left_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1169 current_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1170 previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1171
1172 for (count1 = 0; count1 < nb_samples / 28; count1++) {
1173 int byte = bytestream2_get_byteu(&gb);
1174 coeff1l = ea_adpcm_table[ byte >> 4 ];
1175 coeff2l = ea_adpcm_table[(byte >> 4 ) + 4];
1176 coeff1r = ea_adpcm_table[ byte & 0x0F];
1177 coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
1178
1179 byte = bytestream2_get_byteu(&gb);
1180 shift_left = 20 - (byte >> 4);
1181 shift_right = 20 - (byte & 0x0F);
1182
1183 for (count2 = 0; count2 < 28; count2++) {
1184 byte = bytestream2_get_byteu(&gb);
1185 next_left_sample = sign_extend(byte >> 4, 4) << shift_left;
1186 next_right_sample = sign_extend(byte, 4) << shift_right;
1187
1188 next_left_sample = (next_left_sample +
1189 (current_left_sample * coeff1l) +
1190 (previous_left_sample * coeff2l) + 0x80) >> 8;
1191 next_right_sample = (next_right_sample +
1192 (current_right_sample * coeff1r) +
1193 (previous_right_sample * coeff2r) + 0x80) >> 8;
1194
1195 previous_left_sample = current_left_sample;
1196 current_left_sample = av_clip_int16(next_left_sample);
1197 previous_right_sample = current_right_sample;
1198 current_right_sample = av_clip_int16(next_right_sample);
1199 *samples++ = current_left_sample;
1200 *samples++ = current_right_sample;
1201 }
1202 }
1203
1204 bytestream2_skip(&gb, 2); // Skip terminating 0x0000
1205
1206 break;
1207 }
1208 case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
1209 {
1210 int coeff[2][2], shift[2];
1211
1212 for(channel = 0; channel < avctx->channels; channel++) {
1213 int byte = bytestream2_get_byteu(&gb);
1214 for (i=0; i<2; i++)
1215 coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1216 shift[channel] = 20 - (byte & 0x0F);
1217 }
1218 for (count1 = 0; count1 < nb_samples / 2; count1++) {
1219 int byte[2];
1220
1221 byte[0] = bytestream2_get_byteu(&gb);
1222 if (st) byte[1] = bytestream2_get_byteu(&gb);
1223 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1224 for(channel = 0; channel < avctx->channels; channel++) {
1225 int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
1226 sample = (sample +
1227 c->status[channel].sample1 * coeff[channel][0] +
1228 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1229 c->status[channel].sample2 = c->status[channel].sample1;
1230 c->status[channel].sample1 = av_clip_int16(sample);
1231 *samples++ = c->status[channel].sample1;
1232 }
1233 }
1234 }
1235 bytestream2_seek(&gb, 0, SEEK_END);
1236 break;
1237 }
1238 case AV_CODEC_ID_ADPCM_EA_R1:
1239 case AV_CODEC_ID_ADPCM_EA_R2:
1240 case AV_CODEC_ID_ADPCM_EA_R3: {
1241 /* channel numbering
1242 2chan: 0=fl, 1=fr
1243 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1244 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1245 const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1246 int previous_sample, current_sample, next_sample;
1247 int coeff1, coeff2;
1248 int shift;
1249 unsigned int channel;
1250 uint16_t *samplesC;
1251 int count = 0;
1252 int offsets[6];
1253
1254 for (channel=0; channelchannels; channel++)
1255 offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1256 bytestream2_get_le32(&gb)) +
1257 (avctx->channels + 1) * 4;
1258
1259 for (channel=0; channelchannels; channel++) {
1260 bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1261 samplesC = samples_p[channel];
1262
1263 if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1264 current_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1265 previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1266 } else {
1267 current_sample = c->status[channel].predictor;
1268 previous_sample = c->status[channel].prev_sample;
1269 }
1270
1271 for (count1 = 0; count1 < nb_samples / 28; count1++) {
1272 int byte = bytestream2_get_byte(&gb);
1273 if (byte == 0xEE) { /* only seen in R2 and R3 */
1274 current_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1275 previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1276
1277 for (count2=0; count2<28; count2++)
1278 *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1279 } else {
1280 coeff1 = ea_adpcm_table[ byte >> 4 ];
1281 coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1282 shift = 20 - (byte & 0x0F);
1283
1284 for (count2=0; count2<28; count2++) {
1285 if (count2 & 1)
1286 next_sample = sign_extend(byte, 4) << shift;
1287 else {
1288 byte = bytestream2_get_byte(&gb);
1289 next_sample = sign_extend(byte >> 4, 4) << shift;
1290 }
1291
1292 next_sample += (current_sample * coeff1) +
1293 (previous_sample * coeff2);
1294 next_sample = av_clip_int16(next_sample >> 8);
1295
1296 previous_sample = current_sample;
1297 current_sample = next_sample;
1298 *samplesC++ = current_sample;
1299 }
1300 }
1301 }
1302 if (!count) {
1303 count = count1;
1304 } else if (count != count1) {
1305 av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1306 count = FFMAX(count, count1);
1307 }
1308
1309 if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1310 c->status[channel].predictor = current_sample;
1311 c->status[channel].prev_sample = previous_sample;
1312 }
1313 }
1314
1315 frame->nb_samples = count * 28;
1316 bytestream2_seek(&gb, 0, SEEK_END);
1317 break;
1318 }
1319 case AV_CODEC_ID_ADPCM_EA_XAS:
1320 for (channel=0; channelchannels; channel++) {
1321 int coeff[2][4], shift[4];
1322 int16_t *s = samples_p[channel];
1323 for (n = 0; n < 4; n++, s += 32) {
1324 int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1325 for (i=0; i<2; i++)
1326 coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1327 s[0] = val & ~0x0F;
1328
1329 val = sign_extend(bytestream2_get_le16u(&gb), 16);
1330 shift[n] = 20 - (val & 0x0F);
1331 s[1] = val & ~0x0F;
1332 }
1333
1334 for (m=2; m<32; m+=2) {
1335 s = &samples_p[channel][m];
1336 for (n = 0; n < 4; n++, s += 32) {
1337 int level, pred;
1338 int byte = bytestream2_get_byteu(&gb);
1339
1340 level = sign_extend(byte >> 4, 4) << shift[n];
1341 pred = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1342 s[0] = av_clip_int16((level + pred + 0x80) >> 8);
1343
1344 level = sign_extend(byte, 4) << shift[n];
1345 pred = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1346 s[1] = av_clip_int16((level + pred + 0x80) >> 8);
1347 }
1348 }
1349 }
1350 break;
1351 case AV_CODEC_ID_ADPCM_IMA_AMV:
1352 c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1353 c->status[0].step_index = bytestream2_get_byteu(&gb);
1354 bytestream2_skipu(&gb, 5);
1355 if (c->status[0].step_index > 88u) {
1356 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1357 c->status[0].step_index);
1358 return AVERROR_INVALIDDATA;
1359 }
1360
1361 for (n = nb_samples >> (1 - st); n > 0; n--) {
1362 int v = bytestream2_get_byteu(&gb);
1363
1364 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
1365 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
1366 }
1367 break;
1368 case AV_CODEC_ID_ADPCM_IMA_SMJPEG:
1369 for (i = 0; i < avctx->channels; i++) {
1370 c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1371 c->status[i].step_index = bytestream2_get_byteu(&gb);
1372 bytestream2_skipu(&gb, 1);
1373 if (c->status[i].step_index > 88u) {
1374 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1375 c->status[i].step_index);
1376 return AVERROR_INVALIDDATA;
1377 }
1378 }
1379
1380 for (n = nb_samples >> (1 - st); n > 0; n--) {
1381 int v = bytestream2_get_byteu(&gb);
1382
1383 *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4, 3);
1384 *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf, 3);
1385 }
1386 break;
1387 case AV_CODEC_ID_ADPCM_CT:
1388 for (n = nb_samples >> (1 - st); n > 0; n--) {
1389 int v = bytestream2_get_byteu(&gb);
1390 *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
1391 *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1392 }
1393 break;
1394 case AV_CODEC_ID_ADPCM_SBPRO_4:
1395 case AV_CODEC_ID_ADPCM_SBPRO_3:
1396 case AV_CODEC_ID_ADPCM_SBPRO_2:
1397 if (!c->status[0].step_index) {
1398 /* the first byte is a raw sample */
1399 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1400 if (st)
1401 *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1402 c->status[0].step_index = 1;
1403 nb_samples--;
1404 }
1405 if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1406 for (n = nb_samples >> (1 - st); n > 0; n--) {
1407 int byte = bytestream2_get_byteu(&gb);
1408 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1409 byte >> 4, 4, 0);
1410 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1411 byte & 0x0F, 4, 0);
1412 }
1413 } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1414 for (n = (nb_samples< 0; n--) {
1415 int byte = bytestream2_get_byteu(&gb);
1416 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1417 byte >> 5 , 3, 0);
1418 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1419 (byte >> 2) & 0x07, 3, 0);
1420 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1421 byte & 0x03, 2, 0);
1422 }
1423 } else {
1424 for (n = nb_samples >> (2 - st); n > 0; n--) {
1425 int byte = bytestream2_get_byteu(&gb);
1426 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1427 byte >> 6 , 2, 2);
1428 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1429 (byte >> 4) & 0x03, 2, 2);
1430 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1431 (byte >> 2) & 0x03, 2, 2);
1432 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1433 byte & 0x03, 2, 2);
1434 }
1435 }
1436 break;
1437 case AV_CODEC_ID_ADPCM_SWF:
1438 adpcm_swf_decode(avctx, buf, buf_size, samples);
1439 bytestream2_seek(&gb, 0, SEEK_END);
1440 break;
1441 case AV_CODEC_ID_ADPCM_YAMAHA:
1442 for (n = nb_samples >> (1 - st); n > 0; n--) {
1443 int v = bytestream2_get_byteu(&gb);
1444 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1445 *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
1446 }
1447 break;
1448 case AV_CODEC_ID_ADPCM_AICA:
1449 if (!c->has_status) {
1450 for (channel = 0; channel < avctx->channels; channel++)
1451 c->status[channel].step = 0;
1452 c->has_status = 1;
1453 }
1454 for (channel = 0; channel < avctx->channels; channel++) {
1455 samples = samples_p[channel];
1456 for (n = nb_samples >> 1; n > 0; n--) {
1457 int v = bytestream2_get_byteu(&gb);
1458 *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v & 0x0F);
1459 *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v >> 4 );
1460 }
1461 }
1462 break;
1463 case AV_CODEC_ID_ADPCM_AFC:
1464 {
1465 int samples_per_block;
1466 int blocks;
1467
1468 if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
1469 samples_per_block = avctx->extradata[0] / 16;
1470 blocks = nb_samples / avctx->extradata[0];
1471 } else {
1472 samples_per_block = nb_samples / 16;
1473 blocks = 1;
1474 }
1475
1476 for (m = 0; m < blocks; m++) {
1477 for (channel = 0; channel < avctx->channels; channel++) {
1478 int prev1 = c->status[channel].sample1;
1479 int prev2 = c->status[channel].sample2;
1480
1481 samples = samples_p[channel] + m * 16;
1482 /* Read in every sample for this channel. */
1483 for (i = 0; i < samples_per_block; i++) {
1484 int byte = bytestream2_get_byteu(&gb);
1485 int scale = 1 << (byte >> 4);
1486 int index = byte & 0xf;
1487 int factor1 = ff_adpcm_afc_coeffs[0][index];
1488 int factor2 = ff_adpcm_afc_coeffs[1][index];
1489
1490 /* Decode 16 samples. */
1491 for (n = 0; n < 16; n++) {
1492 int32_t sampledat;
1493
1494 if (n & 1) {
1495 sampledat = sign_extend(byte, 4);
1496 } else {
1497 byte = bytestream2_get_byteu(&gb);
1498 sampledat = sign_extend(byte >> 4, 4);
1499 }
1500
1501 sampledat = ((prev1 * factor1 + prev2 * factor2) +
1502 ((sampledat * scale) << 11)) >> 11;
1503 *samples = av_clip_int16(sampledat);
1504 prev2 = prev1;
1505 prev1 = *samples++;
1506 }
1507 }
1508
1509 c->status[channel].sample1 = prev1;
1510 c->status[channel].sample2 = prev2;
1511 }
1512 }
1513 bytestream2_seek(&gb, 0, SEEK_END);
1514 break;
1515 }
1516 case AV_CODEC_ID_ADPCM_THP:
1517 case AV_CODEC_ID_ADPCM_THP_LE:
1518 {
1519 int table[14][16];
1520 int ch;
1521
1522 #define THP_GET16(g) \
1523 sign_extend( \
1524 avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE ? \
1525 bytestream2_get_le16u(&(g)) : \
1526 bytestream2_get_be16u(&(g)), 16)
1527
1528 if (avctx->extradata) {
1529 GetByteContext tb;
1530 if (avctx->extradata_size < 32 * avctx->channels) {
1531 av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
1532 return AVERROR_INVALIDDATA;
1533 }
1534
1535 bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
1536 for (i = 0; i < avctx->channels; i++)
1537 for (n = 0; n < 16; n++)
1538 table[i][n] = THP_GET16(tb);
1539 } else {
1540 for (i = 0; i < avctx->channels; i++)
1541 for (n = 0; n < 16; n++)
1542 table[i][n] = THP_GET16(gb);
1543
1544 if (!c->has_status) {
1545 /* Initialize the previous sample. */
1546 for (i = 0; i < avctx->channels; i++) {
1547 c->status[i].sample1 = THP_GET16(gb);
1548 c->status[i].sample2 = THP_GET16(gb);
1549 }
1550 c->has_status = 1;
1551 } else {
1552 bytestream2_skip(&gb, avctx->channels * 4);
1553 }
1554 }
1555
1556 for (ch = 0; ch < avctx->channels; ch++) {
1557 samples = samples_p[ch];
1558
1559 /* Read in every sample for this channel. */
1560 for (i = 0; i < (nb_samples + 13) / 14; i++) {
1561 int byte = bytestream2_get_byteu(&gb);
1562 int index = (byte >> 4) & 7;
1563 unsigned int exp = byte & 0x0F;
1564 int factor1 = table[ch][index * 2];
1565 int factor2 = table[ch][index * 2 + 1];
1566
1567 /* Decode 14 samples. */
1568 for (n = 0; n < 14 && (i * 14 + n < nb_samples); n++) {
1569 int32_t sampledat;
1570
1571 if (n & 1) {
1572 sampledat = sign_extend(byte, 4);
1573 } else {
1574 byte = bytestream2_get_byteu(&gb);
1575 sampledat = sign_extend(byte >> 4, 4);
1576 }
1577
1578 sampledat = ((c->status[ch].sample1 * factor1
1579 + c->status[ch].sample2 * factor2) >> 11) + (sampledat << exp);
1580 *samples = av_clip_int16(sampledat);
1581 c->status[ch].sample2 = c->status[ch].sample1;
1582 c->status[ch].sample1 = *samples++;
1583 }
1584 }
1585 }
1586 break;
1587 }
1588 case AV_CODEC_ID_ADPCM_DTK:
1589 for (channel = 0; channel < avctx->channels; channel++) {
1590 samples = samples_p[channel];
1591
1592 /* Read in every sample for this channel. */
1593 for (i = 0; i < nb_samples / 28; i++) {
1594 int byte, header;
1595 if (channel)
1596 bytestream2_skipu(&gb, 1);
1597 header = bytestream2_get_byteu(&gb);
1598 bytestream2_skipu(&gb, 3 - channel);
1599
1600 /* Decode 28 samples. */
1601 for (n = 0; n < 28; n++) {
1602 int32_t sampledat, prev;
1603
1604 switch (header >> 4) {
1605 case 1:
1606 prev = (c->status[channel].sample1 * 0x3c);
1607 break;
1608 case 2:
1609 prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
1610 break;
1611 case 3:
1612 prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
1613 break;
1614 default:
1615 prev = 0;
1616 }
1617
1618 prev = av_clip_intp2((prev + 0x20) >> 6, 21);
1619
1620 byte = bytestream2_get_byteu(&gb);
1621 if (!channel)
1622 sampledat = sign_extend(byte, 4);
1623 else
1624 sampledat = sign_extend(byte >> 4, 4);
1625
1626 sampledat = (((sampledat << 12) >> (header & 0xf)) << 6) + prev;
1627 *samples++ = av_clip_int16(sampledat >> 6);
1628 c->status[channel].sample2 = c->status[channel].sample1;
1629 c->status[channel].sample1 = sampledat;
1630 }
1631 }
1632 if (!channel)
1633 bytestream2_seek(&gb, 0, SEEK_SET);
1634 }
1635 break;
1636 case AV_CODEC_ID_ADPCM_PSX:
1637 for (channel = 0; channel < avctx->channels; channel++) {
1638 samples = samples_p[channel];
1639
1640 /* Read in every sample for this channel. */
1641 for (i = 0; i < nb_samples / 28; i++) {
1642 int filter, shift, flag, byte;
1643
1644 filter = bytestream2_get_byteu(&gb);
1645 shift = filter & 0xf;
1646 filter = filter >> 4;
1647 if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table))
1648 return AVERROR_INVALIDDATA;
1649 flag = bytestream2_get_byteu(&gb);
1650
1651 /* Decode 28 samples. */
1652 for (n = 0; n < 28; n++) {
1653 int sample = 0, scale;
1654
1655 if (flag < 0x07) {
1656 if (n & 1) {
1657 scale = sign_extend(byte >> 4, 4);
1658 } else {
1659 byte = bytestream2_get_byteu(&gb);
1660 scale = sign_extend(byte, 4);
1661 }
1662
1663 scale = scale << 12;
1664 sample = (int)((scale >> shift) + (c->status[channel].sample1 * xa_adpcm_table[filter][0] + c->status[channel].sample2 * xa_adpcm_table[filter][1]) / 64);
1665 }
1666 *samples++ = av_clip_int16(sample);
1667 c->status[channel].sample2 = c->status[channel].sample1;
1668 c->status[channel].sample1 = sample;
1669 }
1670 }
1671 }
1672 break;
1673
1674 default:
1675 return -1;
1676 }
1677
1678 if (avpkt->size && bytestream2_tell(&gb) == 0) {
1679 av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
1680 return AVERROR_INVALIDDATA;
1681 }
1682
1683 *got_frame_ptr = 1;
1684
1685 if (avpkt->size < bytestream2_tell(&gb)) {
1686 av_log(avctx, AV_LOG_ERROR, "Overread of %d < %d\n", avpkt->size, bytestream2_tell(&gb));
1687 return avpkt->size;
1688 }
1689
1690 return bytestream2_tell(&gb);
1691 }
1692
1693 static void adpcm_flush(AVCodecContext *avctx)
1694 {
1695 ADPCMDecodeContext *c = avctx->priv_data;
1696 c->has_status = 0;
1697 }
1698
1699
1700 static const enum AVSampleFormat sample_fmts_s16[] = { AV_SAMPLE_FMT_S16,
1701 AV_SAMPLE_FMT_NONE };
1702 static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16P,
1703 AV_SAMPLE_FMT_NONE };
1704 static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16,
1705 AV_SAMPLE_FMT_S16P,
1706 AV_SAMPLE_FMT_NONE };
1707
1708 #define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
1709 AVCodec ff_ ## name_ ## _decoder = { \
1710 .name = #name_, \
1711 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1712 .type = AVMEDIA_TYPE_AUDIO, \
1713 .id = id_, \
1714 .priv_data_size = sizeof(ADPCMDecodeContext), \
1715 .init = adpcm_decode_init, \
1716 .decode = adpcm_decode_frame, \
1717 .flush = adpcm_flush, \
1718 .capabilities = AV_CODEC_CAP_DR1, \
1719 .sample_fmts = sample_fmts_, \
1720 }
1721
1722 /* Note: Do not forget to add new entries to the Makefile as well. */
1723 ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM, sample_fmts_s16p, adpcm_4xm, "ADPCM 4X Movie");
1724 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC, sample_fmts_s16p, adpcm_afc, "ADPCM Nintendo Gamecube AFC");
1725 ADPCM_DECODER(AV_CODEC_ID_ADPCM_AICA, sample_fmts_s16p, adpcm_aica, "ADPCM Yamaha AICA");
1726 ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT, sample_fmts_s16, adpcm_ct, "ADPCM Creative Technology");
1727 ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK, sample_fmts_s16p, adpcm_dtk, "ADPCM Nintendo Gamecube DTK");
1728 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA, sample_fmts_s16, adpcm_ea, "ADPCM Electronic Arts");
1729 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1730 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1, sample_fmts_s16p, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1731 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2, sample_fmts_s16p, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1732 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3, sample_fmts_s16p, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1733 ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS, sample_fmts_s16p, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1734 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV, sample_fmts_s16, adpcm_ima_amv, "ADPCM IMA AMV");
1735 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC, sample_fmts_s16, adpcm_ima_apc, "ADPCM IMA CRYO APC");
1736 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DAT4, sample_fmts_s16, adpcm_ima_dat4, "ADPCM IMA Eurocom DAT4");
1737 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3, sample_fmts_s16, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1738 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4, sample_fmts_s16, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1739 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1740 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1741 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS, sample_fmts_s16, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1742 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI, sample_fmts_s16, adpcm_ima_oki, "ADPCM IMA Dialogic OKI");
1743 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT, sample_fmts_s16p, adpcm_ima_qt, "ADPCM IMA QuickTime");
1744 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD, sample_fmts_s16, adpcm_ima_rad, "ADPCM IMA Radical");
1745 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG, sample_fmts_s16, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1746 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV, sample_fmts_s16p, adpcm_ima_wav, "ADPCM IMA WAV");
1747 ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS, sample_fmts_both, adpcm_ima_ws, "ADPCM IMA Westwood");
1748 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS, sample_fmts_s16, adpcm_ms, "ADPCM Microsoft");
1749 ADPCM_DECODER(AV_CODEC_ID_ADPCM_MTAF, sample_fmts_s16p, adpcm_mtaf, "ADPCM MTAF");
1750 ADPCM_DECODER(AV_CODEC_ID_ADPCM_PSX, sample_fmts_s16p, adpcm_psx, "ADPCM Playstation");
1751 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2, sample_fmts_s16, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1752 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3, sample_fmts_s16, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1753 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4, sample_fmts_s16, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1754 ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF, sample_fmts_s16, adpcm_swf, "ADPCM Shockwave Flash");
1755 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP_LE, sample_fmts_s16p, adpcm_thp_le, "ADPCM Nintendo THP (little-endian)");
1756 ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP, sample_fmts_s16p, adpcm_thp, "ADPCM Nintendo THP");
1757 ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA, sample_fmts_s16p, adpcm_xa, "ADPCM CDROM XA");
1758 ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA, sample_fmts_s16, adpcm_yamaha, "ADPCM Yamaha");