NOIP模拟赛(by hzwer) T1 小奇挖矿

【题目背景】

  小奇要开采一些矿物,它驾驶着一台带有钻头(初始能力值 w)的飞船,按既定
  路线依次飞过喵星系的 n 个星球。

【问题描述】

  星球分为 2 类:资源型和维修型。


  1. 资源型:含矿物质量 a[i],若选择开采,则得到 a[i]*p 的金钱,之后钻头
  损耗 k%,即 p=p*(1-0.01k)


  2. 维修型:维护费用 b[i],若选择维修,则支付 b[i]*p 的金钱,之后钻头修
  复 c%,即 p=p*(1+0.01c)(p 为钻头当前能力值)


  注:维修后钻头的能力值可以超过初始值
  请你帮它决策最大化这个收入

【输入格式】

  第一行 4 个整数 n,k,c,w。
  以下 n 行,每行 2 个整数 type,x。
  type 为 1 则代表其为资源型星球,x 为其矿物质含量 a[i];
  type 为 2 则代表其为维修型星球,x 为其维护费用 b[i];

【输出格式】

  输出一行一个实数(保留两位小数),表示要求的结果。

【样例输入】

  5 50 50 10
  1 10
  1 20
  2 10
  2 20
  130

【样例输出】

  375.00

【数据范围】

  对于 30%的数据 n<=100
  对于 50%的数据 n<=1000,k=100
  对于 100%的数据 n<=100000,0<=k,c,w,a[i],b[i]<=100
  保证答案不超过 10^9

【解析】

  这道题从题面就可以看出是一道动态规划的题,但有一点显然的是:前面的决策会影响后面的结果。为了消去前面的影响,我们可以从后边开始动态规划。

  设f[i]表示在第i个星球的最大收入。若当前点为资源型星球,那么如果开采就可以获得当前星球的收入,而由于耐久度会减少,前面所得到的收入要整体下降%k所以状态转移方程为f[i]=max(f[i-1],a[i]+f[i-1]*(1-0.01*k))。若当前点为维修型星球,那么同理可得:减少a[i]并让前面的收入增加%c,状态转移方程为f[i]=max(f[i-1],f[i-1]*(1+0.01*c)-a[i])。为了在状态转移时更加方便,我们可以将原来耐久度为w的钻机分解成w个耐久为一的钻机,最后给答案乘w即可。

  综上所述,状态转移方程为:

  f[i]=max(f[i-1],a[i]+f[i-1]*(1-k%))    (t[i]=1)

  f[i]=max(f[i-1],f[i-1]*(1+c%)-a[i])    (t[i]=2)

 

【代码】

 1 #include 
 2 #include 
 3 #include 
 4 #define N 100002
 5 using namespace std;
 6 int n,d[N],a[N],i;
 7 double f[N],k,c,w;
 8 int main()
 9 {
10     freopen("explo.in","r",stdin);
11     freopen("explo.out","w",stdout);
12     cin>>n>>k>>c>>w;
13     for(i=1;i<=n;i++) cin>>d[i]>>a[i];
14     for(i=n;i>=1;i--){
15         if(d[i]==1) f[i]=max(f[i+1],f[i+1]*(1-0.01*k)+a[i]);
16         else f[i]=max(f[i+1],f[i+1]*(1+0.01*c)-a[i]);
17     }
18     f[1]=f[1]*w;
19     cout<2)<<fixed<1]<<endl;
20     fclose(stdin);
21     fclose(stdout);
22     return 0;
23 }

 

转载于:https://www.cnblogs.com/LSlzf/p/10388472.html

你可能感兴趣的:(NOIP模拟赛(by hzwer) T1 小奇挖矿)