浅谈AQS中Semaphore信号量源码解读

前言

其实Semaphore源码上的注释就说的比较清楚作用是如何的,下面是从源码翻译过来的解释:

计数信号灯。从概念上讲,信号量维护一组许可证。如果需要,acquire方法就是直到获得许可才会继续执行(阻塞)。release()方法会添加一个许可证,或者是释放acquire占据的许可。但是,其实没有实际存在许可证这个实体对象;simaphore只是记录可用的数量并相应地采取行动。

详解分析

Semaphore通常用于限制线程的数量,而不能访问某些(物理或逻辑)资源。例如,以下是一个使用信号量控制对项目池的访问的类:

class Pool {
    private static final int MAX_AVAILABLE = 100;
    private final Semaphore available = new Semaphore(MAX_AVAILABLE, true);
 
    public Object getItem() throws InterruptedException {
      available.acquire();
      return getNextAvailableItem();
    }
 
    public void putItem(Object x) {
      if (markAsUnused(x))
        available.release();
    }
 
    protected Object[] items = ... whatever kinds of items being managed
    protected boolean[] used = new boolean[MAX_AVAILABLE];
 
    protected synchronized Object getNextAvailableItem() {
      for (int i = 0; i < MAX_AVAILABLE; ++i) {
        if (!used[i]) {
           used[i] = true;
           return items[i];
        }
      }
      return null; // not reached
    }
 
    protected synchronized boolean markAsUnused(Object item) {
      for (int i = 0; i < MAX_AVAILABLE; ++i) {
        if (item == items[i]) {
           if (used[i]) {
             used[i] = false;
             return true;
           } else
             return false;
        }
      }
      return false;
    }
  }
}

在获取item之前,每个线程必须从Semaphore获取许可,以确保item可供使用。当线程处理完item后,线程将返回到池中,并向Semaphore返回一个许可,从而允许另一个线程获取许可。调用acquire方法时不会保持同步锁定。信号量已经包装了限制访问池所需的同步,需要与维护池本身一致性所需的任何同步分开。

初始化为1的信号量,并且使用该信号量时,它最多只能有一个许可证可用,可以充当互斥锁。这通常被称为二进制信号量,因为它只有两种状态:一个许可证可用,或者零个许可证可用。以这种方式使用时,二进制信号量具有属性(与许多其他锁不同 类似java.util.concurrent.locks.Lock),锁可以由所有者以外的线程释放(因为信号量没有所有权的概念)。这在某些特定的上下文中非常有用,例如死锁恢复。

Semaphore支持配置fairness 是否公平性。当设置为false时,此类不保证线程获取许可的顺序,也就是允许抢占插队,调用acquire的线程可以在排队的线程之前分配到许可;设置为true时,Semaphore保证调用acquire方法的线程被选中,是按照它们调用这些方法的顺序(先进先出;FIFO)获得许可。注意:FIFO排序必须适用于这些方法中的特定内部执行点。因此,一个线程可以在另一个线程之前调用acquire,但在另一个线程之后到达排序点,并且在从方法返回时也是如此。tryAcquire方法不支持公平性设置,但接受任何可用的许可。

通常,用于控制资源访问的Semaphore应该被初始化为公平的,以确保没有线程被耗尽而无法访问资源(线程饥饿)。当将信号量用于其他类型的同步控制时,非公平排序的吞吐量优势往往超过公平性。

Semaphore还提供了可以一次可以处理多个许可证 acquire(int)和release(int)。当这些方法在没有公平性的情况下被使用时,要小心无限期推迟的风险。

具体实现

OK 以上是源码解释的很清楚Semaphore的用途和用法。那么接下来看下Semaphore 是如何实现的呢?

首先看下Semaphore 构造器 共2个

/**
     * Creates a {@code Semaphore} with the given number of
     * permits and nonfair fairness setting.
     *
     * @param permits the initial number of permits available.
     *        This value may be negative, in which case releases
     *        must occur before any acquires will be granted.
     */
    public Semaphore(int permits) {
        sync = new NonfairSync(permits);
    }

    /**
     * Creates a {@code Semaphore} with the given number of
     * permits and the given fairness setting.
     *
     * @param permits the initial number of permits available.
     *        This value may be negative, in which case releases
     *        must occur before any acquires will be granted.
     * @param fair {@code true} if this semaphore will guarantee
     *        first-in first-out granting of permits under contention,
     *        else {@code false}
     */
    public Semaphore(int permits, boolean fair) {
        sync = fair ? new FairSync(permits) : new NonfairSync(permits);
    }

这就看到主要有2个类,一个是FairSync 和 NonfairSync,那就是分为公平性和不公平性具体实现了。

/**
     * NonFair version
     */
    static final class NonfairSync extends Sync {
        private static final long serialVersionUID = -2694183684443567898L;

        NonfairSync(int permits) {
            super(permits);
        }

        protected int tryAcquireShared(int acquires) {
            return nonfairTryAcquireShared(acquires);
        }
    }

    /**
     * Fair version
     */
    static final class FairSync extends Sync {
        private static final long serialVersionUID = 2014338818796000944L;

        FairSync(int permits) {
            super(permits);
        }

        protected int tryAcquireShared(int acquires) {
            for (;;) {
                if (hasQueuedPredecessors())
                    return -1;
                int available = getState();
                int remaining = available - acquires;
                if (remaining < 0 ||
                    compareAndSetState(available, remaining))
                    return remaining;
            }
        }
    }

可以看到FairSync 和 NonfairSync 都继承于Sync, 并且重写了 tryAcquireShared 这个方法。

那先看下sync类的具体是什么

 /**
     * Synchronization implementation for semaphore.  Uses AQS state
     * to represent permits. Subclassed into fair and nonfair
     * versions.
     */
    abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = 1192457210091910933L;

        Sync(int permits) {
            setState(permits);
        }

        final int getPermits() {
            return getState();
        }

        final int nonfairTryAcquireShared(int acquires) {
            for (;;) {
                int available = getState();
                int remaining = available - acquires;
                if (remaining < 0 ||
                    compareAndSetState(available, remaining))
                    return remaining;
            }
        }

        protected final boolean tryReleaseShared(int releases) {
            for (;;) {
                int current = getState();
                int next = current + releases;
                if (next < current) // overflow
                    throw new Error("Maximum permit count exceeded");
                if (compareAndSetState(current, next))
                    return true;
            }
        }

        final void reducePermits(int reductions) {
            for (;;) {
                int current = getState();
                int next = current - reductions;
                if (next > current) // underflow
                    throw new Error("Permit count underflow");
                if (compareAndSetState(current, next))
                    return;
            }
        }

        final int drainPermits() {
            for (;;) {
                int current = getState();
                if (current == 0 || compareAndSetState(current, 0))
                    return current;
            }
        }
    }

可以看到Sync 是继承 AbstractQueuedSynchronizer 这个抽象类,而 AbstractQueuedSynchronizer 经常被称为 AQS,java.util.concurrent包中很多类都依赖于这个类,它是基于FIFO队列,可以用于构建锁或者其他相关同步装置。它利用了一个int来表示状态,期望它能够成为实现大部分同步需求的基础。使用的方法是继承,子类通过继承同步器并需要实现它的方法来管理其状态,管理的方式就是通过类似acquire和release的方式来操纵状态。然而多线程环境中对状态的操纵必须确保原子性,因此子类对于状态的把握,需要使用这个同步器提供的以下三个方法对状态进行操作:

java.util.concurrent.locks.AbstractQueuedSynchronizer.getState()
java.util.concurrent.locks.AbstractQueuedSynchronizer.setState(int)
java.util.concurrent.locks.AbstractQueuedSynchronizer.compareAndSetState(int, int)

具体AbstractQueuedSynchronizer 解析以后再单文章说,Semaphore 只要两个方法,上文也提到了就是acquire 和 release,那就来看看它们具体实现

//Semaphore
public void acquire() throws InterruptedException {
        sync.acquireSharedInterruptibly(1);
}
//AbstractQueuedSynchronizer
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
  if (Thread.interrupted())
    throw new InterruptedException();
  if (tryAcquireShared(arg) < 0)
    doAcquireSharedInterruptibly(arg);
}

可以看到tryAcquireShared这个方法,其实在FairSync 和 NonfairSync都重写了。

首先看下FairSync

protected int tryAcquireShared(int acquires) {
   for (;;) {
     if (hasQueuedPredecessors())//查询是否有其他线程比比当前线程等待时间长--AbstractQueuedSynchronizer
       return -1;
     int available = getState();
     int remaining = available - acquires;
     if (remaining < 0 ||
         compareAndSetState(available, remaining))
       return remaining;
   }
 }

可以看到先判断是否有其他线程等待时间比自己长,如果有就返回-1;如果当前状态(信号量)少于目标信号量 或者 CAS修改成功返回剩余信号量,这也就保证按照顺序获取信号。

再看下NonfairSync

protected int tryAcquireShared(int acquires) {
  return nonfairTryAcquireShared(acquires);
}
final int nonfairTryAcquireShared(int acquires) {
  for (;;) {
    int available = getState();
    int remaining = available - acquires;
    if (remaining < 0 ||
        compareAndSetState(available, remaining))
      return remaining;
  }
}

可以看到就和FairSync少hasQueuedPredecessors()判断,其余逻辑是一样的。

那么当tryAcquireShared返回时大于等于0是就相当于获取到了信号量,也就是信号量其实用AQS的state的值控制。那么当小于0时,doAcquireSharedInterruptibly 又是什么逻辑呢?

/**
 * Acquires in shared interruptible mode.
 * @param arg the acquire argument
 */
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
  final Node node = addWaiter(Node.SHARED);
  boolean failed = true;
  try {
    for (;;) {
      final Node p = node.predecessor();
      if (p == head) {
        int r = tryAcquireShared(arg);
        if (r >= 0) {
          setHeadAndPropagate(node, r);
          p.next = null; // help GC
          failed = false;
          return;
        }
      }
      if (shouldParkAfterFailedAcquire(p, node) &&
          parkAndCheckInterrupt())
        throw new InterruptedException();
    }
  } finally {
    if (failed)
      cancelAcquire(node);
  }
}

这个方法是作用是以共享可中断模式获取。那么是怎么实现呢?

首先通过 addWaiter(Node.SHARED),添加当前线程到AQS的队列中。

然后再进行一次tryAcquireShared,如果成功了,就是返回,如果继续不成功,就走了

shouldParkAfterFailedAcquire和parkAndCheckInterrupt方法。

shouldParkAfterFailedAcquire方法就是 检查并更新失败的节点的状态获取。就是验证下当前线程是否正常,并纠正不正常的当前线程状态,并返回flase进行重新尝试获取信号。

private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
   int ws = pred.waitStatus;
   if (ws == Node.SIGNAL)
     /*
             * This node has already set status asking a release
             * to signal it, so it can safely park.
             */
     return true;
   if (ws > 0) {
     /*
             * Predecessor was cancelled. Skip over predecessors and
             * indicate retry.
             */
     do {
       node.prev = pred = pred.prev;
     } while (pred.waitStatus > 0);
     pred.next = node;
   } else {
     /*
             * waitStatus must be 0 or PROPAGATE.  Indicate that we
             * need a signal, but don't park yet.  Caller will need to
             * retry to make sure it cannot acquire before parking.
             */
     compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
   }
   return false;
 }

parkAndCheckInterrupt 是方法进行park休眠 并且判断是否线程中断

private final boolean parkAndCheckInterrupt() {
   LockSupport.park(this);
   return Thread.interrupted();
 }

接下来看release吧

public void release() {
  sync.releaseShared(1);
}

sync的releaseShared就是AQS的releaseShared方法,并且进行重写。那继续看

/**
     * Releases in shared mode.  Implemented by unblocking one or more
     * threads if {@link #tryReleaseShared} returns true.
     *
     * @param arg the release argument.  This value is conveyed to
     *        {@link #tryReleaseShared} but is otherwise uninterpreted
     *        and can represent anything you like.
     * @return the value returned from {@link #tryReleaseShared}
     */
public final boolean releaseShared(int arg) {
  if (tryReleaseShared(arg)) {
    doReleaseShared();
    return true;
  }
  return false;
}

看 tryReleaseShared 方法 是被Sync类重写了

protected final boolean tryReleaseShared(int releases) {
  for (;;) {
    int current = getState();
    int next = current + releases;
    if (next < current) // overflow
      throw new Error("Maximum permit count exceeded");
    if (compareAndSetState(current, next))
      return true;
  }
}

逻辑比较简单,就是获取状态(信号量)并且进行CAS修改,返回结果true为止。

接下来就是doReleaseShared方法。

/**
     * Release action for shared mode -- signals successor and ensures
     * propagation. (Note: For exclusive mode, release just amounts
     * to calling unparkSuccessor of head if it needs signal.)
     */
private void doReleaseShared() {
  /*
         * Ensure that a release propagates, even if there are other
         * in-progress acquires/releases.  This proceeds in the usual
         * way of trying to unparkSuccessor of head if it needs
         * signal. But if it does not, status is set to PROPAGATE to
         * ensure that upon release, propagation continues.
         * Additionally, we must loop in case a new node is added
         * while we are doing this. Also, unlike other uses of
         * unparkSuccessor, we need to know if CAS to reset status
         * fails, if so rechecking.
         */
  for (;;) {
    Node h = head;
    if (h != null && h != tail) {
      int ws = h.waitStatus;
      if (ws == Node.SIGNAL) {
        if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
          continue;            // loop to recheck cases
        unparkSuccessor(h);
      }
      else if (ws == 0 &&
               !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
        continue;                // loop on failed CAS
    }
    if (h == head)                   // loop if head changed
      break;
  }
}

把源码翻译下:

共享模式的释放操作——向后继者发出信号并确保传播。(注意:对于独占模式,如果需要信号,释放相当于调用head的unparkSuccessor。)

确保一个发布可以传播,即使有其他正在进行的获取/发布。这是按照通常的方法进行的,如果头部需要信号,则尝试断开处理器的连接。但如果没有,则将status设置为PROPAGATE,以确保在发布时继续传播。此外,我们必须循环以防在执行此操作时添加新节点。另外,与unparkSuccessor的其他用法不同,我们需要知道CAS重置状态是否失败,如果是,则重新检查。

看不懂没关系,Semaphore的NODE是 SIGNAL,可以看上文的保存,所以关注点看unparkSuccessor方法就好。

private void unparkSuccessor(Node node) {
        /*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.
         */
        int ws = node.waitStatus;
        if (ws < 0)
            compareAndSetWaitStatus(node, ws, 0);

        /*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.
         */
        Node s = node.next;
        if (s == null || s.waitStatus > 0) {
            s = null;
            for (Node t = tail; t != null && t != node; t = t.prev)
                if (t.waitStatus <= 0)
                    s = t;
        }
        if (s != null)
            LockSupport.unpark(s.thread);
    }

可以看到waitStatus其实在上面 doReleaseShared 已经改成0了,所以忽略。

下一个逻辑就是将next 休眠唤醒,unpark的线程被保存在后续节点中,后者通常只是下一个节点。但如果取消或明显为空,则从尾部向后遍历,以找到实际未取消的后继项。

写在最后

好了,Semaphore主要逻辑就这些,其他的下次再说吧。

想了解更多知识,请关注我吧_

你可能感兴趣的:(浅谈AQS中Semaphore信号量源码解读)