hadoop_mapreduce_wordcount例子

1. Wordcount例子

1) 数据流:

 hadoop_mapreduce_wordcount例子_第1张图片

2) Map

Map需要派生自map,四个参数为k1,v1,k2,v2的数据类型

 

package com.harvetech.service;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Mapper;

//                                                 k1            v1     k2        v2

public class WordCountMapper extends Mapper{

@Override

protected void map(LongWritable k1, Text v1, Context context)

throws IOException, InterruptedException {

/*

 * context代表Map的上下文

 * 上文:HDFS

 * 下文是:Reducer

 */

//数据: I love Beijing

String data = v1.toString();

//分词

String[] words = data.split(" ");

//输出:  k2     v2

for(String w:words){

context.write(new Text(w), new LongWritable(1));

}

}

}

 

3) Reduce

Reduce类需要派生自reducer类,四个参数分别为k3,v3,k4,v4的类型

 

package com.harvetech.service;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Reducer;

//                                              k3     v3          k4       v4

public class WordCountReducer extends Reducer {

@Override

protected void reduce(Text k3, Iterable v3,Context context) throws IOException, InterruptedException {

/*

 * context 代表Reducer上下文

 * 上文:mapper

 * 下文:HDFS

 */

long total = 0;

for(LongWritable l:v3){

total = total + l.get();

}

//输出  k4     v4

context.write(k3, new LongWritable(total));

}

}

  

4) Main

main方法中关联mapreduce创建job

package com.harvetech.service;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.LongWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.Job;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCountMain {

public static void main(String[] args) throws Exception {

//创建一个job = mapper + reducer

Job job = Job.getInstance(new Configuration());

//指定job的入口

job.setJarByClass(WordCountMain.class);

//指定任务的mapper和输出数据类型

job.setMapperClass(WordCountMapper.class);

job.setMapOutputKeyClass(Text.class); //指定k2的类型

job.setMapOutputValueClass(LongWritable.class);//指定v2的数据类型

//指定任务的reducer和输出数据类型

job.setReducerClass(WordCountReducer.class);

job.setOutputKeyClass(Text.class);//指定k4的类型

job.setOutputValueClass(LongWritable.class);//指定v4的类型

//指定输入的路径和输出的路径

FileInputFormat.setInputPaths(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

//执行任务

job.waitForCompletion(true);

}

}

 

5) jar

右键项目打jar包,第一二步默认,第三步选择执行的main方法类:

 hadoop_mapreduce_wordcount例子_第2张图片

 

6) 执行

和之前的demo一样,在hdfs中准备数据文件,将jar包从本机导入到hadoop集群主节点机器。

hadoop jar mapreduceTest.jar /input/wordcountTestData.txt /output/wordcountResult-fake-cluster3

 hadoop_mapreduce_wordcount例子_第3张图片hadoop_mapreduce_wordcount例子_第4张图片

 

 

 

你可能感兴趣的:(hadoop)